Automatic atlas-based segmentation of brain white matter in neonates at risk for neurodevelopmental disorders

L.T. Neto Fonseca, C. van Pul, N.F. Lori, Rieneke van den Boom, Peter Andriessen, J. Buijs, A. Vilanova Bartroli

Research output: Chapter in Book/Report/Conference proceedingChapterAcademicpeer-review

1 Citation (Scopus)


Very preterm infants, < 32 weeks gestation, are at high risk for brain injury. Cognitive deficits are often diagnosed at a later stage, since there are no available predictive biomarkers in the neonatal period. The maturation of specific white matter (WM) brain structures is considered a promising early-stage biomarker. With Diffusion Tensor Imaging (DTI) tractography, an in vivo and non-invasive evaluation of these anatomical structures is possible. We developed an automatic tractography segmentation pipeline, which allows for maturation assessment of the different segmented WM structures. Our segmentation pipeline is atlas-based, specifically designed for premature neonates at term equivalent age. In order to better make use of global information from tractography, all processing is done in the fiber domain. Segmented fiber bundles are further automatically quantified with respect to volume and anisotropy. Of the 24 automatically segmented neonatal tractographies, only three contained more than 30% mislabeled fibers. Results show no dependency to WM pathology. By automatically segmenting WM, we reduced the user-dependency and bias characteristic of manual methods. This study assesses the structure of the neonatal brain based on an automatic WM segmentation in the fiber domain method using DTI tractography data.
Original languageEnglish
Title of host publicationModeling, analysis, and visualization of anisotropy
EditorsT. Schultz, E. Özarslan, I. Hotz
Place of PublicationCham
Number of pages18
ISBN (Electronic)978-3-319-61358-1
ISBN (Print)978-3-319-61357-4
Publication statusPublished - Jan 2017

Publication series

NameMathematics and Visualization
ISSN (Print)1612-3786


Dive into the research topics of 'Automatic atlas-based segmentation of brain white matter in neonates at risk for neurodevelopmental disorders'. Together they form a unique fingerprint.

Cite this