Augmenting the connectivity of planar and geometric graphs

I. Rutter, A. Wolff

Research output: Chapter in Book/Report/Conference proceedingConference contributionAcademic

Abstract

In this paper we study some connectivity augmentation problems. We want to make planar graphs 2-vertex (or 2-edge) connected by adding edges such that the resulting graphs remain planar. We show that it is NP-hard to find a minimum-cardinality augmentation that makes a planar graph 2-edge connected. This was known for 2-vertex connectivity. We further show that both problems are hard in a geometric setting, even when restricted to trees. For the special case of convex geometric graphs we give efficient algorithms. We also study the following related problem. Given a plane geometric graph G, two vertices s and t of G, and an integer k, how many edges have to be added to G such that G contains k edge- (or vertex-) disjoint s-t paths? For k=2 we give optimal worst-case bounds; for k=3 we characterize all cases that have a solution.
Original languageEnglish
Title of host publicationAbstracts 24th European Workshop on Computational Geometry (EuroCG'08, Nancy, France, March 18-20, 2008)
EditorsS. Petitjean
Place of PublicationVandoeuvre-lès-Nancy
PublisherLORIA
Pages71-74
Publication statusPublished - 2008

Fingerprint Dive into the research topics of 'Augmenting the connectivity of planar and geometric graphs'. Together they form a unique fingerprint.

Cite this