Abstract
Gold (Au) nanoparticles have been synthesized that are stabilized by an organic ligand bearing a dithiolane functional group for binding to Au, an oligo(p-phenylene vinylene) (OPV) chromophoric group to drive self-assembly via p-p interactions, and a hydroxy functionality for interparticle hydrogen bonding. The OPV-Au particles reversibly self-assemble in n-heptane solution, forming shape persistent, spherical, nanometer-sized aggregates that do not collapse on a substrate. Optical absorption and transmission electron microscopy tomography studies show that the size and shape persistency can be tuned by modification of the ligands, adjustment of the core size, and variation of the concentration. The spherical assemblies can be manipulated with the tip of an atomic force microscope: an aggregate can be pushed over the surface for at least 20 times with nanometer precision and without substantial loss of material.
Original language | English |
---|---|
Pages (from-to) | 6501-6508 |
Number of pages | 8 |
Journal | ACS Nano |
Volume | 4 |
Issue number | 11 |
DOIs | |
Publication status | Published - 2010 |