Atomic Force Microscopy (AFM) study of redox conditions in sandstones: Impact on wettability modification and mineral morphology

Sherifat Yesufu-Rufai (Corresponding author), Fons Marcelis, Apostolos Georgiadis, Steffen Berg, Maja Rücker, Johannes van Wunnik, Paul Luckham

Research output: Contribution to journalArticleAcademicpeer-review

12 Citations (Scopus)


Laboratory core flood experiments performed to establish chemical enhanced oil recovery (cEOR) procedures often make use of rock samples that deviate from prevailing conditions within the reservoir. These samples have usually been preserved in an uncontrolled oxidising environment in contrast to reducing reservoir conditions, a discrepancy that affects rock wettability and thus oil recovery. The use of a reducing fluid is a predominant method, particularly regarding iron-bearing minerals, for restoring these samples to representative redox states. In this study, the adhesion of polar ([sbnd]NH2 and [sbnd]COOH) and non-polar ([sbnd]CH3) crude oil components to the pore surfaces of Bandera Brown, an outcrop of similar mineralogy to reservoir sandstones, was investigated using Atomic Force Microscopy to determine the potential of a reducing fluid of Sodium Dithionite in seawater to alter surface wettability. This novel workflow for the observation of redox condition effects illuminates the nanoscopic interaction forces at the rock/fluid interface responsible this phenomenon. The results obtained show that adhesion forces between the oil components and the Bandera Brown surface after treatment with the reducing fluid decreased in the order: [sbnd]NH2 (∼70 %) >[sbnd]COOH (∼36 %) >[sbnd]CH3 (∼3 %), due to diminishing affinity of the surface for the polar functional groups when the oxidation state of iron was altered from iron III to iron II. The morphology of Bandera Brown is noted to be affected as well with some dissolution of the mineral composition within cemented pores observed. The results demonstrate that redox state is indeed important for the assessment of wetting properties of surfaces as measurements performed in oxidising environments may not be representative of reservoir reducing conditions. Also, complete reduction of iron oxides on the mineral surfaces seems unlikely without altering the prevailing pore structure. These findings have relevance not only in EOR cases but can find applicability in a much wider context including remediation studies, in particular when iron is present.

Original languageEnglish
Article number124765
JournalColloids and Surfaces A: Physicochemical and Engineering Aspects
Publication statusPublished - 20 Jul 2020
Externally publishedYes


  • Atomic force microscopy
  • Enhanced oil recovery
  • Iron oxide
  • Redox
  • Sandstone
  • Wettability


Dive into the research topics of 'Atomic Force Microscopy (AFM) study of redox conditions in sandstones: Impact on wettability modification and mineral morphology'. Together they form a unique fingerprint.

Cite this