Asymptotic fingerprinting capacity for non-binary alphabets

D. Boesten, B. Skoric

Research output: Chapter in Book/Report/Conference proceedingConference contributionAcademicpeer-review

15 Citations (Scopus)

Abstract

We compute the channel capacity of non-binary fingerprinting under the Marking Assumption, in the limit of large coalition size c. The solution for the binary case was found by Huang and Moulin. They showed that asymptotically, the capacity is 1/(c 2 2ln 2), the interleaving attack is optimal and the arcsine distribution is the optimal bias distribution. In this paper we prove that the asymptotic capacity for general alphabet size q is (q¿-¿1)/(c 2 2ln q). Our proof technique does not reveal the optimal attack or bias distribution. The fact that the capacity is an increasing function of q shows that there is a real gain in going to non-binary alphabets.
Original languageEnglish
Title of host publicationInformation Hiding (13th International Conference, IH 2011, Prague, Czech Republic, May 18-20, 2011. Revised Selected Papers)
EditorsT. Filler, T. Pevny, S. Craver, A. Ker
Place of PublicationBerlin
PublisherSpringer
Pages1-13
ISBN (Print)978-3-642-24177-2
DOIs
Publication statusPublished - 2011

Publication series

NameLecture Notes in Computer Science
Volume6958
ISSN (Print)0302-9743

Fingerprint Dive into the research topics of 'Asymptotic fingerprinting capacity for non-binary alphabets'. Together they form a unique fingerprint.

  • Cite this

    Boesten, D., & Skoric, B. (2011). Asymptotic fingerprinting capacity for non-binary alphabets. In T. Filler, T. Pevny, S. Craver, & A. Ker (Eds.), Information Hiding (13th International Conference, IH 2011, Prague, Czech Republic, May 18-20, 2011. Revised Selected Papers) (pp. 1-13). (Lecture Notes in Computer Science; Vol. 6958). Springer. https://doi.org/10.1007/978-3-642-24178-9_1