TY - JOUR
T1 - Assessment of an extended Nijboer-Zernike approach for the computation of optical point-spread functions
AU - Braat, J.J.M.
AU - Dirksen, P.
AU - Janssen, A.J.E.M.
PY - 2002
Y1 - 2002
N2 - We assess the validity of an extended Nijboer-Zernike approach [J. Opt. Soc. Am. A19, 849 (2002)], based on recently found Bessel-series representations of diffraction integrals comprising an arbitrary aberration and a defocus part, for the computation of optical point-spread functions of circular, aberrated optical systems. These new series representations yield a flexible means to compute optical point-spread functions, both accurately and efficiently, under defocus and aberration conditions that seem to cover almost all cases of practical interest. Because of the analytical nature of the formulas, there are no discretization effects limiting the accuracy, as opposed to the more commonly used numerical packages based on strictly numerical integration methods. Instead, we have an easily managed criterion, expressed in the number of terms to be included in the Bessel-series representations, guaranteeing the desired accuracy. For this reason, the analytical method can also serve as a calibration tool for the numerically based methods. The analysis is not limited to pointlike objects but can also be used for extended objects under various illumination conditions. The calculation schemes are simple and permit one to trace the relative strength of the various interfering complex-amplitude terms that contribute to the final image intensity function.
AB - We assess the validity of an extended Nijboer-Zernike approach [J. Opt. Soc. Am. A19, 849 (2002)], based on recently found Bessel-series representations of diffraction integrals comprising an arbitrary aberration and a defocus part, for the computation of optical point-spread functions of circular, aberrated optical systems. These new series representations yield a flexible means to compute optical point-spread functions, both accurately and efficiently, under defocus and aberration conditions that seem to cover almost all cases of practical interest. Because of the analytical nature of the formulas, there are no discretization effects limiting the accuracy, as opposed to the more commonly used numerical packages based on strictly numerical integration methods. Instead, we have an easily managed criterion, expressed in the number of terms to be included in the Bessel-series representations, guaranteeing the desired accuracy. For this reason, the analytical method can also serve as a calibration tool for the numerically based methods. The analysis is not limited to pointlike objects but can also be used for extended objects under various illumination conditions. The calculation schemes are simple and permit one to trace the relative strength of the various interfering complex-amplitude terms that contribute to the final image intensity function.
U2 - 10.1364/JOSAA.19.000858
DO - 10.1364/JOSAA.19.000858
M3 - Article
SN - 1084-7529
VL - 19
SP - 858
EP - 870
JO - Journal of the Optical Society of America A, Optics, Image Science and Vision
JF - Journal of the Optical Society of America A, Optics, Image Science and Vision
IS - 5
ER -