Artificial cilia fabricated using magnetic fiber drawing generate substantial fluid flow

Research output: Contribution to journalArticleAcademicpeer-review

43 Citations (Scopus)
342 Downloads (Pure)

Abstract

Microscopic hair-like structures, such as cilia, exist ubiquitously in nature and are used by various organisms for transportation purposes. Many efforts have been made to mimic the fluid pumping function of cilia, but most of the fabrication processes of these "artificial cilia" are tedious and expensive, hindering their practical applications. In this paper, an attractive and potentially cost-effective, magnetic fiber drawing fabrication technique of magnetic artificial cilia is demonstrated. Our artificial cilia are able to generate a substantial fluid net flow velocity of water of up to 70 µm/s (corresponding to a generated volumetric flow rate about 0.6 µL/min and a pressure difference of about 0.04 Pa) in a closed-loop microfluidic channel when actuated using an external magnetic field. A detailed analysis of the relationship between the experimentally observed cilia kinematics and corresponding induced flow is in line with a previously reported theoretical/numerical study.
Original languageEnglish
Pages (from-to)167-174
JournalMicrofluidics and Nanofluidics
Volume18
Issue number2
DOIs
Publication statusPublished - 2015

Fingerprint

Dive into the research topics of 'Artificial cilia fabricated using magnetic fiber drawing generate substantial fluid flow'. Together they form a unique fingerprint.

Cite this