Abstract
One of the main features of any lithography technique is its resolution, generally maximized for a single isolated object. However, in most cases, functional devices call for highly dense arrays of nanostructures, the fabrication of which is generally challenging. Here, we show the growth of arrays of densely packed isolated nanowires based on the use of focused beam induced deposition plus Ar(+) milling. The growth strategy presented herein allows the creation of films showing thickness modulation with periodicity determined by the beam scan pitch. The subsequent Ar(+) milling translates such modulation into an array of isolated nanowires. This approach has been applied to grow arrays of W-based nanowires by focused ion beam induced deposition and Co nanowires by focused electron beam induced deposition, achieving linear densities up to 2.5 × 10(7) nanowires/cm (one nanowire every 40 nm). These results open the route for specific applications in nanomagnetism, nanosuperconductivity, and nanophotonics, where arrays of densely packed isolated nanowires grown by focused beam deposition are required.
Original language | English |
---|---|
Pages (from-to) | 3788-3795 |
Journal | ACS Nano |
Volume | 8 |
Issue number | 4 |
DOIs | |
Publication status | Published - 2014 |
Externally published | Yes |