Abstract
The Euclidean $k$-center problem is a classical problem that has been extensively studied in computer science. Given a set $\mathcal{G}$ of $n$ points in Euclidean space, the problem is to determine a set $\mathcal{C}$ of $k$ centers (not necessarily part of $\mathcal{G}$) such that the maximum distance between a point in $\mathcal{G}$ and its nearest neighbor in $\mathcal{C}$ is minimized. In this paper we study the corresponding $(k,\ell)$-center problem for polygonal curves under the Fr\'echet distance, that is, given a set $\mathcal{G}$ of $n$ polygonal curves in $\mathbb{R}^d$, each of complexity $m$, determine a set $\mathcal{C}$ of $k$ polygonal curves in $\mathbb{R}^d$, each of complexity $\ell$, such that the maximum Fr\'echet distance of a curve in $\mathcal{G}$ to its closest curve in $\mathcal{C}$ is minimized. In this paper, we substantially extend and improve the known approximation bounds for curves in dimension $2$ and higher. We show that, if $\ell$ is part of the input, then there is no polynomial-time approximation scheme unless $\mathsf{P}=\mathsf{NP}$. Our constructions yield different bounds for one and two-dimensional curves and the discrete and continuous Fr\'echet distance. In the case of the discrete Fr\'echet distance on two-dimensional curves, we show hardness of approximation within a factor close to $2.598$. This result also holds when $k=1$, and the $\mathsf{NP}$-hardness extends to the case that $\ell=\infty$, i.e., for the problem of computing the minimum-enclosing ball under the Fr\'echet distance. Finally, we observe that a careful adaptation of Gonzalez' algorithm in combination with a curve simplification yields a $3$-approximation in any dimension, provided that an optimal simplification can be computed exactly. We conclude that our approximation bounds are close to being tight.
Original language | English |
---|---|
Article number | 1805.01547v2 |
Number of pages | 24 |
Journal | arXiv |
Volume | 2018 |
DOIs | |
Publication status | Published - 20 Jul 2018 |
Bibliographical note
24 pages; results on minimum-enclosing ball added, additional author added, general revisionKeywords
- cs.CG
- cs.IR
- F.2.2