Abstract
We propose a method for determining the most likely cause, in terms of conventional generator outages and renewable fluctuations, of power system frequency reaching a predetermined level that is deemed unacceptable to the system operator. Our parsimonious model of system frequency incorporates primary and secondary control mechanisms, and supposes that conventional outages occur according to a Poisson process and renewable fluctuations follow a diffusion process. We utilize a large deviations theory based approach that outputs the most likely cause of a large excursion of frequency from its desired level. These results yield the insight that current levels of renewable power generation do not significantly increase system vulnerability in terms of frequency deviations relative to conventional failures. However, for a large range of model parameters it is possible that such vulnerabilities may arise as renewable penetration increases.
Original language | English |
---|---|
Title of host publication | 2020 International Conference on Probabilistic Methods Applied to Power Systems, PMAPS 2020 - Proceedings |
Publisher | IEEE/LEOS |
Number of pages | 6 |
ISBN (Electronic) | 9781728128221 |
ISBN (Print) | 978-1-7281-2823-8 |
DOIs | |
Publication status | Published - 21 Aug 2020 |
Event | 2020 International Conference on Probabilistic Methods Applied to Power Systems (PMAPS) - Liege, Belgium Duration: 18 Aug 2020 → 21 Aug 2020 |
Conference
Conference | 2020 International Conference on Probabilistic Methods Applied to Power Systems (PMAPS) |
---|---|
Period | 18/08/20 → 21/08/20 |
Keywords
- Generators
- Frequency control
- Aggregates
- Power system stability
- Power generation
- Renewable energy sources
- Ornstein-Uhlenbeck process
- power system frequency
- large deviations theory
- Poisson process
- renewable energy
- Schilder's theorem
- energy systems
- stochastic processes