Analysis of temporal evolution of quantum dot surface chemistry by surface-enhanced Raman scattering

I. Doǧan, R. Gresback, T. Nozaki, M.C.M. van de Sanden

Research output: Contribution to journalArticleAcademicpeer-review

9 Citations (Scopus)
94 Downloads (Pure)

Abstract

Temporal evolution of surface chemistry during oxidation of silicon quantum dot (Si-QD) surfaces were probed using surface-enhanced Raman scattering (SERS). A monolayer of hydrogen and chlorine terminated plasma-synthesized Si-QDs were spin-coated on silver oxide thin films. A clearly enhanced signal of surface modes, including Si-Cl x and Si-H x modes were observed from as-synthesized Si-QDs as a result of the plasmonic enhancement of the Raman signal at Si-QD/silver oxide interface. Upon oxidation, a gradual decrease of Si-Cl x and Si-H x modes, and an emergence of Si-O x and Si-O-H x modes have been observed. In addition, first, second and third transverse optical modes of Si-QDs were also observed in the SERS spectra, revealing information on the crystalline morphology of Si-QDs. An absence of any of the abovementioned spectral features, but only the first transverse optical mode of Si-QDs from thick Si-QD films validated that the spectral features observed from Si-QDs on silver oxide thin films are originated from the SERS effect. These results indicate that real-time SERS is a powerful diagnostic tool and a novel approach to probe the dynamic surface/interface chemistry of quantum dots, especially when they involve in oxidative, catalytic, and electrochemical surface/interface reactions.

Original languageEnglish
Article number29508
Pages (from-to)1-10
Number of pages10
JournalScientific Reports
Volume6
DOIs
Publication statusPublished - 8 Jul 2016

Fingerprint

Dive into the research topics of 'Analysis of temporal evolution of quantum dot surface chemistry by surface-enhanced Raman scattering'. Together they form a unique fingerprint.

Cite this