Abstract
High clamping force levels reduce the efficiency of the Continuously Variable Transmission (CVT). However, high clamping force levels are necessary to prevent slip between the belt and the pulleys. If a small amount of slip is allowed, the clamping force level can be reduced. To achieve this, slip in a CVT is investigated. From measurements on an experimental setup, Traction curve data and efficiency measurements are derived. A model describing slip in a CVT is verified using measurements with a belt with increased play. It is found that small amounts of slip can be controlled in a stable way on the setup. The traction curve was mostly dependent on the CVT ratio. Efficiency is found to be highest for 1 to 2\% slip depending on the ratio. The model is in reasonable agreement with the measurements.
Original language | English |
---|---|
Title of host publication | ASME International Mechanical Engineering Congress and R&D Expo, United States, Washington |
Publication status | Published - 2003 |