Analysis of fouling in refuse waste incinerators

M.C. Beek, van, C.C.M. Rindt, J.G. Wijers, A.A. Steenhoven, van

Research output: Contribution to journalArticleAcademicpeer-review

32 Citations (Scopus)
1 Downloads (Pure)

Abstract

Gas-side fouling of waste-heat-recovery boilers, caused mainly by the deposition of particulate matter, reduces the heat transfer in the boiler. The fouling as observed on the tube bundles in the boiler of a Dutch refuse waste incinerator varied from thin and powdery for the economizer to thick and sintered for the superheater. Analysis of process data showed that both types of layers resulted in a 27% decrease of the heat transfer coefficient of the bundles. To determine the important mechanisms in the deposition of particles, layers taken from the different bundles are analyzed using electron microscopy. The analysis revealed the existence of a melt in the thick deposit. The melt, giving rise to a liquid phase, increases the sticking efficiency of the deposit and leads to larger deposition rates. For the economizer and the superheater the actual deposition rate is calculated from the change in heat transfer. On the basis of a comparison between the calculated deposition rates and deposition rates to be expected in the case of a pure diffusion and thermophoresis process, it is shown that for both types of deposits inertia-controlled transport is the dominant transport mechanism of particles.

Original languageEnglish
Pages (from-to)22-31
Number of pages10
JournalHeat Transfer Engineering
Volume22
Issue number1
DOIs
Publication statusPublished - 1 Jan 2001

    Fingerprint

Cite this