Abstract
Many studies have assessed the effect of landscape patterns on spatial ecological processes by simulating these processes in computer-generated landscapes with varying composition and configuration. To generate such landscapes, various neutral landscape models have been developed. However, the limited set of landscape-level pattern variables included in these models is often inadequate to generate landscapes that reflect real landscapes. In order to achieve more flexibility and variability in the generated landscapes patterns, a more complete set of class- and patch-level pattern variables should be implemented in these models. These enhancements have been implemented in Landscape Generator (LG), which is a software that uses optimization algorithms to generate landscapes that match user-defined target values. Developed for participatory spatial planning at small scale, we enhanced the usability of LG and demonstrated how it can be used for larger scale ecological studies. First, we used LG to recreate landscape patterns from a real landscape (i.e., a mountainous region in Switzerland). Second, we generated landscape series with incrementally changing pattern variables, which could be used in ecological simulation studies. We found that LG was able to recreate landscape patterns that approximate those of real landscapes. Furthermore, we successfully generated landscape series that would not have been possible with traditional neutral landscape models. LG is a promising novel approach for generating neutral landscapes and enables testing of new hypotheses regarding the influence of landscape patterns on ecological processes. LG is freely available online.
Original language | English |
---|---|
Pages (from-to) | 3808-3821 |
Number of pages | 14 |
Journal | Ecology and Evolution |
Volume | 6 |
Issue number | 11 |
Early online date | 9 May 2016 |
DOIs | |
Publication status | Published - Jun 2016 |
Keywords
- Landscape metrics, landscape visualizations, spatial optimization algorithms, spatial or time series.