Abstract
Miniature solenoids routinely enhance small volume nuclear magnetic resonance imaging and spectroscopy; however, no such techniques exist for patients. We present an implantable microcoil for diverse clinical applications, with a microliter coil volume. The design is loosely based on implantable depth electrodes, in which a flexible tube serves as the substrate, and a metal stylet is inserted into the tube during implantation. The goal is to provide enhanced signal-to-noise ratio (SNR) of structures that are not easily accessed by surface coils. The first-generation prototype was designed for implantation up to 2 cm, and provided initial proof-of-concept for microscopy. Subsequently, we optimized the design to minimize the influence of lead inductances, and to thereby double the length of the implantable depth (4 cm). The second-generation design represents an estimated SNR improvement of over 30 as compared to the original design when extended to 4 cm. Impedance measurements indicate that the device is stable for up to 24h in body temperature saline. We evaluated the SNR and MR-related heating of the device at 3T. The implantable microcoil can differentiate fat and water peaks, and resolve submillimeter features.
Original language | English |
---|---|
Article number | 6095609 |
Pages (from-to) | 2118-2125 |
Number of pages | 8 |
Journal | IEEE Transactions on Biomedical Engineering |
Volume | 59 |
Issue number | 8 |
DOIs | |
Publication status | Published - 2012 |
Externally published | Yes |
Keywords
- Implantable biomedical devices
- microscopy
- neural microtechnology
- nuclear imaging