TY - JOUR
T1 - An eigencurrent approach to the analysis of electrically large 3-D structures using linear embedding via Green's operators
AU - Lancellotti, V.
AU - Hon, de, B.P.
AU - Tijhuis, A.G.
PY - 2009
Y1 - 2009
N2 - We present an extension of the Linear Embedding via Greens Operators (LEGO) procedure for efficiently dealing with 3-D electromagnetic composite structures. In LEGOs notion, we enclose the objects forming a structure within arbitrarily shaped domains (bricks), which (by invoking the Equivalence Principle) we characterize through scattering operators. In the 2-D instance, we then combined the bricks numerically, in a cascade of successive embedding steps, to build increasingly larger domains and obtain the scattering operator of the whole aggregate of objects. In the 3-D case, however, this process becomes quite soon impracticable, in that the resulting scattering matrices are too big to be stored and handled on most computers. To circumvent this hurdle, we propose a novel formulation of the electromagnetic problem based on an integral equation involving the total inverse scattering operator of the structure, which can be written analytically in terms of scattering operators of the bricks and transfer operators among them. We then solve this equation by the Method of Moments combined with the Eigencurrent Expansion Method, which allows for a considerable reduction in size of the system matrix and thereby enables us to study very large structures.
AB - We present an extension of the Linear Embedding via Greens Operators (LEGO) procedure for efficiently dealing with 3-D electromagnetic composite structures. In LEGOs notion, we enclose the objects forming a structure within arbitrarily shaped domains (bricks), which (by invoking the Equivalence Principle) we characterize through scattering operators. In the 2-D instance, we then combined the bricks numerically, in a cascade of successive embedding steps, to build increasingly larger domains and obtain the scattering operator of the whole aggregate of objects. In the 3-D case, however, this process becomes quite soon impracticable, in that the resulting scattering matrices are too big to be stored and handled on most computers. To circumvent this hurdle, we propose a novel formulation of the electromagnetic problem based on an integral equation involving the total inverse scattering operator of the structure, which can be written analytically in terms of scattering operators of the bricks and transfer operators among them. We then solve this equation by the Method of Moments combined with the Eigencurrent Expansion Method, which allows for a considerable reduction in size of the system matrix and thereby enables us to study very large structures.
U2 - 10.1109/TAP.2009.2027616
DO - 10.1109/TAP.2009.2027616
M3 - Article
SN - 0018-926X
VL - 57
SP - 3575
EP - 3585
JO - IEEE Transactions on Antennas and Propagation
JF - IEEE Transactions on Antennas and Propagation
IS - 11
ER -