An adaptive wavelet-based collocation method for solving multiscale problems in continuum mechanics

Tobias Kaiser (Corresponding author), Joris J.C. Remmers, Marc G.D. Geers

Research output: Contribution to journalArticleAcademicpeer-review

11 Downloads (Pure)


Computational multiscale methods are highly sophisticated numerical approaches to predict the constitutive response of heterogeneous materials from their underlying microstructures. However, the quality of the prediction intrinsically relies on an accurate representation of the microscale morphology and its individual constituents, which makes these formulations computationally demanding. Against this background, the applicability of an adaptive wavelet-based collocation approach is studied in this contribution. It is shown that the Hill–Mandel energy equivalence condition can naturally be accounted for in the wavelet basis, (discrete) wavelet-based scale-bridging relations are derived, and a wavelet-based mapping algorithm for internal variables is proposed. The characteristic properties of the formulation are then discussed by an in-depth analysis of elementary one-dimensional problems in multiscale mechanics. In particular, the microscale fields and their macroscopic analogues are studied for microstructures that feature material interfaces and material interphases. Analytical solutions are provided to assess the accuracy of the simulation results.

Original languageEnglish
Pages (from-to)1335-1357
Number of pages23
JournalComputational Mechanics
Issue number6
Publication statusPublished - Dec 2022


FundersFunder number
Technische Universität Dortmund


    • Collocation methods
    • Computational homogenisation
    • Computational multiscale methods
    • Continuum mechanics
    • Wavelets


    Dive into the research topics of 'An adaptive wavelet-based collocation method for solving multiscale problems in continuum mechanics'. Together they form a unique fingerprint.

    Cite this