Alterations of bone microstructure and strength in end-stage renal failure

A. Trombetti, C. Stoermann, T. Chevalley, B. Rietbergen, van, F.R. Hermann, P.Y. Martin, R. Rizzoli

Research output: Contribution to journalArticleAcademicpeer-review

42 Citations (Scopus)
111 Downloads (Pure)


Summary End-stage renal disease (ESRD) patients have a high risk of fractures. We evaluated bone microstructure and finite-element analysis-estimated strength and stiffness in patients with ESRD by high-resolution peripheral computed tomography. We observed an alteration of cortical and trabecular bone microstructure and of bone strength and stiffness in ESRD patients. Introduction Fragility fractures are common in ESRD patients on dialysis. Alterations of bone microstructure contribute to skeletal fragility, independently of areal bone mineral density. Methods We compared microstructure and finite-element analysis estimates of strength and stiffness by high-resolution peripheral quantitative computed tomography (HR-pQCT) in 33 ESRD patients on dialysis (17 females and 16 males; mean age, 47.0¿±¿12.6 years) and 33 age-matched healthy controls. Results Dialyzed women had lower radius and tibia cortical density with higher radius cortical porosity and lower tibia cortical thickness, compared to controls. Radius trabecular number was lower with higher heterogeneity of the trabecular network. Male patients displayed only a lower radius cortical density. Radius and tibia cortical thickness correlated negatively with bone-specific alkaline phosphatase (BALP). Microstructure did not correlate with parathyroid hormone (PTH) levels. Cortical porosity correlated positively with "Kidney Disease: Improving Global Outcomes" working group PTH level categories (r¿=¿0.36, p¿
Original languageEnglish
Pages (from-to)1721-1732
Number of pages12
JournalOsteoporosis International
Issue number5
Publication statusPublished - 2013


Dive into the research topics of 'Alterations of bone microstructure and strength in end-stage renal failure'. Together they form a unique fingerprint.

Cite this