Algebraic decoding beyond $e_{BCH}$ of some binary cyclic codes, when $e>e_{BCH}$

P.A.H. Bours, J.C.M. Janssen, M.J.M.M. van Asperdt, H.C.A. Tilborg, van

Research output: Contribution to journalArticleAcademicpeer-review

16 Citations (Scopus)

Abstract

For a number of binary cyclic codes with e>e BCH, algebraic algorithms are given to find the error locator polynomial. Thus, for these codes more errors can be corrected algebraically than by the Berlekamp-Massey algorithm. In some cases, all error patterns of weight up to e can be decoded; in other cases, only error patterns of weight up to e' with e BCH
Original languageEnglish
Pages (from-to)214-222
JournalIEEE Transactions on Information Theory
Volume36
Issue number1
DOIs
Publication statusPublished - 1990

Fingerprint

Dive into the research topics of 'Algebraic decoding beyond $e_{BCH}$ of some binary cyclic codes, when $e>e_{BCH}$'. Together they form a unique fingerprint.

Cite this