Adsorption calorimetric and spectroscopic studies on isomorphous substituted (Al, Fe, In, Ti) MFI zeolites

J.J. Jänchen, G. Vorbeck, H. Stach, B. Parlitz, J.H.C. Hooff, van

Research output: Chapter in Book/Report/Conference proceedingConference contributionAcademic

19 Citations (Scopus)

Abstract

The catalytically active sites of isomorphous substituted MFI structures have been characterized by infrared spectroscopy and microcalorimetric measurements using ammonia and acetonitrile as probe. Due to decreasing heats of NH3 adsorption, the NH3 TPD peak positions, the positions of the IR OH stretching frequencies and their shifts upon adsorption of acetonitrile the Brønsted acid site strength of the modified MFI decreases from Al>Fe> In>> silicalite. In addition to those strong sites weaker Lewis centres due to the non-framework material have been found. For TS-1 comparatively low heats of adsorption due to coordinatively bonded ammonia have been detected. The amounts of adsorption with heats higher than found for silicalite correlates with the amount of Ti in the sample.
Original languageEnglish
Title of host publicationCatalysis by microporous materials : proceedings of ZEOCAT '95, Szombathely, Hungary
EditorsH.K. Beyer, H.G. Karge, J.B. Nagy
Place of PublicationAmsterdam
PublisherElsevier
Pages108-115
ISBN (Print)0-444-82049-3
DOIs
Publication statusPublished - 1995
Eventconference; ZEOCAT ; 11 (Szombathely) : 1995.07.09-13; 1995-07-09; 1995-07-13 -
Duration: 9 Jul 199513 Jul 1995

Publication series

NameStudies in Surface Science and Catalysis
Volume94
ISSN (Print)0167-2991

Conference

Conferenceconference; ZEOCAT ; 11 (Szombathely) : 1995.07.09-13; 1995-07-09; 1995-07-13
Period9/07/9513/07/95
OtherZEOCAT ; 11 (Szombathely) : 1995.07.09-13

Fingerprint

Zeolites
Adsorption
Ammonia
Temperature programmed desorption
Stretching
Infrared spectroscopy
Acids
Hot Temperature
acetonitrile

Cite this

Jänchen, J. J., Vorbeck, G., Stach, H., Parlitz, B., & Hooff, van, J. H. C. (1995). Adsorption calorimetric and spectroscopic studies on isomorphous substituted (Al, Fe, In, Ti) MFI zeolites. In H. K. Beyer, H. G. Karge, & J. B. Nagy (Eds.), Catalysis by microporous materials : proceedings of ZEOCAT '95, Szombathely, Hungary (pp. 108-115). (Studies in Surface Science and Catalysis; Vol. 94). Amsterdam: Elsevier. https://doi.org/10.1016/S0167-2991(06)81211-5
Jänchen, J.J. ; Vorbeck, G. ; Stach, H. ; Parlitz, B. ; Hooff, van, J.H.C. / Adsorption calorimetric and spectroscopic studies on isomorphous substituted (Al, Fe, In, Ti) MFI zeolites. Catalysis by microporous materials : proceedings of ZEOCAT '95, Szombathely, Hungary. editor / H.K. Beyer ; H.G. Karge ; J.B. Nagy. Amsterdam : Elsevier, 1995. pp. 108-115 (Studies in Surface Science and Catalysis).
@inproceedings{67d4cf5a9dd446958e33fec201b9a536,
title = "Adsorption calorimetric and spectroscopic studies on isomorphous substituted (Al, Fe, In, Ti) MFI zeolites",
abstract = "The catalytically active sites of isomorphous substituted MFI structures have been characterized by infrared spectroscopy and microcalorimetric measurements using ammonia and acetonitrile as probe. Due to decreasing heats of NH3 adsorption, the NH3 TPD peak positions, the positions of the IR OH stretching frequencies and their shifts upon adsorption of acetonitrile the Br{\o}nsted acid site strength of the modified MFI decreases from Al>Fe> In>> silicalite. In addition to those strong sites weaker Lewis centres due to the non-framework material have been found. For TS-1 comparatively low heats of adsorption due to coordinatively bonded ammonia have been detected. The amounts of adsorption with heats higher than found for silicalite correlates with the amount of Ti in the sample.",
author = "J.J. J{\"a}nchen and G. Vorbeck and H. Stach and B. Parlitz and {Hooff, van}, J.H.C.",
year = "1995",
doi = "10.1016/S0167-2991(06)81211-5",
language = "English",
isbn = "0-444-82049-3",
series = "Studies in Surface Science and Catalysis",
publisher = "Elsevier",
pages = "108--115",
editor = "H.K. Beyer and H.G. Karge and J.B. Nagy",
booktitle = "Catalysis by microporous materials : proceedings of ZEOCAT '95, Szombathely, Hungary",
address = "Netherlands",

}

Jänchen, JJ, Vorbeck, G, Stach, H, Parlitz, B & Hooff, van, JHC 1995, Adsorption calorimetric and spectroscopic studies on isomorphous substituted (Al, Fe, In, Ti) MFI zeolites. in HK Beyer, HG Karge & JB Nagy (eds), Catalysis by microporous materials : proceedings of ZEOCAT '95, Szombathely, Hungary. Studies in Surface Science and Catalysis, vol. 94, Elsevier, Amsterdam, pp. 108-115, conference; ZEOCAT ; 11 (Szombathely) : 1995.07.09-13; 1995-07-09; 1995-07-13, 9/07/95. https://doi.org/10.1016/S0167-2991(06)81211-5

Adsorption calorimetric and spectroscopic studies on isomorphous substituted (Al, Fe, In, Ti) MFI zeolites. / Jänchen, J.J.; Vorbeck, G.; Stach, H.; Parlitz, B.; Hooff, van, J.H.C.

Catalysis by microporous materials : proceedings of ZEOCAT '95, Szombathely, Hungary. ed. / H.K. Beyer; H.G. Karge; J.B. Nagy. Amsterdam : Elsevier, 1995. p. 108-115 (Studies in Surface Science and Catalysis; Vol. 94).

Research output: Chapter in Book/Report/Conference proceedingConference contributionAcademic

TY - GEN

T1 - Adsorption calorimetric and spectroscopic studies on isomorphous substituted (Al, Fe, In, Ti) MFI zeolites

AU - Jänchen, J.J.

AU - Vorbeck, G.

AU - Stach, H.

AU - Parlitz, B.

AU - Hooff, van, J.H.C.

PY - 1995

Y1 - 1995

N2 - The catalytically active sites of isomorphous substituted MFI structures have been characterized by infrared spectroscopy and microcalorimetric measurements using ammonia and acetonitrile as probe. Due to decreasing heats of NH3 adsorption, the NH3 TPD peak positions, the positions of the IR OH stretching frequencies and their shifts upon adsorption of acetonitrile the Brønsted acid site strength of the modified MFI decreases from Al>Fe> In>> silicalite. In addition to those strong sites weaker Lewis centres due to the non-framework material have been found. For TS-1 comparatively low heats of adsorption due to coordinatively bonded ammonia have been detected. The amounts of adsorption with heats higher than found for silicalite correlates with the amount of Ti in the sample.

AB - The catalytically active sites of isomorphous substituted MFI structures have been characterized by infrared spectroscopy and microcalorimetric measurements using ammonia and acetonitrile as probe. Due to decreasing heats of NH3 adsorption, the NH3 TPD peak positions, the positions of the IR OH stretching frequencies and their shifts upon adsorption of acetonitrile the Brønsted acid site strength of the modified MFI decreases from Al>Fe> In>> silicalite. In addition to those strong sites weaker Lewis centres due to the non-framework material have been found. For TS-1 comparatively low heats of adsorption due to coordinatively bonded ammonia have been detected. The amounts of adsorption with heats higher than found for silicalite correlates with the amount of Ti in the sample.

U2 - 10.1016/S0167-2991(06)81211-5

DO - 10.1016/S0167-2991(06)81211-5

M3 - Conference contribution

SN - 0-444-82049-3

T3 - Studies in Surface Science and Catalysis

SP - 108

EP - 115

BT - Catalysis by microporous materials : proceedings of ZEOCAT '95, Szombathely, Hungary

A2 - Beyer, H.K.

A2 - Karge, H.G.

A2 - Nagy, J.B.

PB - Elsevier

CY - Amsterdam

ER -

Jänchen JJ, Vorbeck G, Stach H, Parlitz B, Hooff, van JHC. Adsorption calorimetric and spectroscopic studies on isomorphous substituted (Al, Fe, In, Ti) MFI zeolites. In Beyer HK, Karge HG, Nagy JB, editors, Catalysis by microporous materials : proceedings of ZEOCAT '95, Szombathely, Hungary. Amsterdam: Elsevier. 1995. p. 108-115. (Studies in Surface Science and Catalysis). https://doi.org/10.1016/S0167-2991(06)81211-5