Adaptive multiple-resolution stream clustering

M. Hassani, P. Spaus, T. Seidl

Research output: Chapter in Book/Report/Conference proceedingConference contributionAcademicpeer-review

17 Citations (Scopus)
1 Downloads (Pure)

Abstract

Stream data applications have become more and more prominent recently and the requirements for stream clustering algorithms have increased drastically. Due to continuously evolving nature of the stream, it is crucial that the algorithm autonomously detects clusters of arbitrary shape, with different densities, and varying number of clusters. Although available density-based stream clustering are able to detect clusters with arbitrary shapes and varying numbers, they fail to adapt their thresholds to detect clusters with different densities. In this paper we propose a stream clustering algorithm called HASTREAM, which is based on a hierarchical density-based clustering model that automatically detects clusters of different densities. The density thresholds are independently adapted to the existing data without the need of any user intervention. To reduce the high computational cost of the presented approach, techniques from the graph theory domain are utilized to devise an incremental update of the underlying model. To show the effectiveness of HASTREAM and hierarchical density-based approaches in general, several synthetic and real world data sets are evaluated using various quality measures. The results showed that the hierarchical property of the model was able to improve the quality of density-based stream clusterings and enabled HASTREAM to detect streaming clusters of different densities.
Original languageEnglish
Title of host publicationMachine Learning and Data Mining in Pattern Recognition - 10th International Conference, MLDM 2014, St. Petersburg, Russia, July 21-24, 2014. Proceedings
EditorsP. Perner
Place of PublicationCham
PublisherSpringer
Pages134-148
Number of pages15
ISBN (Electronic)978-3-319-08979-9
ISBN (Print)978-3-319-08978-2
DOIs
Publication statusPublished - 2014
Externally publishedYes
EventMachine Learning and Data Mining in Pattern Recognition - 10th International Conference, MLDM 2014, St. Petersburg, Russia, July 21-24, 2014. - St. Petersburg, Russian Federation
Duration: 21 Jul 201424 Jul 2014
http://www.wikicfp.com/cfp/servlet/event.showcfp?eventid=19553&copyownerid=801

Publication series

NameLNAI
PublisherSpringer
Volume8556
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

ConferenceMachine Learning and Data Mining in Pattern Recognition - 10th International Conference, MLDM 2014, St. Petersburg, Russia, July 21-24, 2014.
Abbreviated titleMLDM2014
Country/TerritoryRussian Federation
CitySt. Petersburg
Period21/07/1424/07/14
Internet address

Fingerprint

Dive into the research topics of 'Adaptive multiple-resolution stream clustering'. Together they form a unique fingerprint.

Cite this