TY - JOUR
T1 - Adaptive interpolation of discrete-time signals that can be modeled as autoregressive processes
AU - Janssen, A.J.E.M.
AU - Veldhuis, R.N.J.
AU - Vries, L.B.
PY - 1986
Y1 - 1986
N2 - The authors present an adaptive algorithm for the restoration of lost sample values in discrete-time signals that can locally be described by means of autoregressive processes. The only restrictions are that the positions of the unknown samples should be known and that they should be embedded in a sufficiently large neighborhood of known samples. The estimates of the unknown samples are obtained by minimizing the sum of squares of the residual errors that involve estimates of the autoregressive parameters. A statistical analysis shows that, for a burst of lost samples, the expected quadratic interpolation error per sample converges to the signal variance when the burst length tends to infinity. The method is in fact the first step of an interactive algorithm where in each iteration step current estimates of the missing samples are used to compute the new estimates. Furthermore, the feasibility of implementation in hardware for real-time use is established. The method has been tested on artificially generated autoregressive processes, as well as on digitized music and speech signals.
AB - The authors present an adaptive algorithm for the restoration of lost sample values in discrete-time signals that can locally be described by means of autoregressive processes. The only restrictions are that the positions of the unknown samples should be known and that they should be embedded in a sufficiently large neighborhood of known samples. The estimates of the unknown samples are obtained by minimizing the sum of squares of the residual errors that involve estimates of the autoregressive parameters. A statistical analysis shows that, for a burst of lost samples, the expected quadratic interpolation error per sample converges to the signal variance when the burst length tends to infinity. The method is in fact the first step of an interactive algorithm where in each iteration step current estimates of the missing samples are used to compute the new estimates. Furthermore, the feasibility of implementation in hardware for real-time use is established. The method has been tested on artificially generated autoregressive processes, as well as on digitized music and speech signals.
U2 - 10.1109/TASSP.1986.1164824
DO - 10.1109/TASSP.1986.1164824
M3 - Article
SN - 0096-3518
VL - 34
SP - 317
EP - 330
JO - IEEE Transactions on Acoustics, Speech, and Signal Processing
JF - IEEE Transactions on Acoustics, Speech, and Signal Processing
IS - 2
ER -