TY - JOUR
T1 - Acute neuronal injury, excitotoxicity, and the endocannabinoid system
AU - Stelt, van der, M.
AU - Veldhuis, W.B.
AU - Maccarrone, M.
AU - Bär, P.R.
AU - Nicolaij, K.
AU - Veldink, G.A.
AU - Di, V., M.
AU - Vliegenthart, J.F.G.
PY - 2002
Y1 - 2002
N2 - The endocannabinoid system is a valuable target for drug discovery, because it is involved in the regulation of many cellular and physiological functions. The endocannabinoid system constitutes the endogenous lipids anandamide, 2-arachidonoylglycerol and noladin ether, and the cannabinoid CB1 and CB2 receptors as well as the proteins for their inactivation. It is thought that (endo)cannabinoid-based drugs may potentially be useful to reduce the effects of neurodegeneration. This paper reviews recent developments in the endocannabinoid system and its involvement in neuroprotection.
Exogenous (endo)cannabinoids have been shown to exert neuroprotection in a variety of in vitro and in vivo models of neuronal injury via different mechanisms, such as prevention of excitotoxicity by CB1-mediated inhibition of glutamatergic transmission, reduction of calcium influx, and subsequent inhibition of deleterious cascades, TNF-a formation, and anti-oxidant activity. It has been suggested that the release of endogenous endocannabinoids during neuronal injury might be a protective response. However, several observations indicate that the role of the endocannabinoid system as a general endogenous protection system is questionable. The data are critically reviewed and possible explanations are given
AB - The endocannabinoid system is a valuable target for drug discovery, because it is involved in the regulation of many cellular and physiological functions. The endocannabinoid system constitutes the endogenous lipids anandamide, 2-arachidonoylglycerol and noladin ether, and the cannabinoid CB1 and CB2 receptors as well as the proteins for their inactivation. It is thought that (endo)cannabinoid-based drugs may potentially be useful to reduce the effects of neurodegeneration. This paper reviews recent developments in the endocannabinoid system and its involvement in neuroprotection.
Exogenous (endo)cannabinoids have been shown to exert neuroprotection in a variety of in vitro and in vivo models of neuronal injury via different mechanisms, such as prevention of excitotoxicity by CB1-mediated inhibition of glutamatergic transmission, reduction of calcium influx, and subsequent inhibition of deleterious cascades, TNF-a formation, and anti-oxidant activity. It has been suggested that the release of endogenous endocannabinoids during neuronal injury might be a protective response. However, several observations indicate that the role of the endocannabinoid system as a general endogenous protection system is questionable. The data are critically reviewed and possible explanations are given
U2 - 10.1385/MN:26:2-3:317
DO - 10.1385/MN:26:2-3:317
M3 - Article
SN - 0893-7648
VL - 26
SP - 317
EP - 346
JO - Molecular Neurobiology
JF - Molecular Neurobiology
IS - 2-3
ER -