TY - JOUR
T1 - Active sites in the alkylation of toluene with methanol : a study by selective acid-base poisoning
AU - Borgna, A.
AU - Sepulveda, J.
AU - Magni, S.I.
AU - Apesteguia, C.R.
PY - 2004
Y1 - 2004
N2 - Selective acid–base poisoning of the alkylation of toluene with methanol was studied over alkali and alkaline-earth exchanged Y zeolites. Surface acid–base properties of the samples were determined by infrared spectroscopy using carbon dioxide and pyridine as probe molecules. Selective poisoning experiments were performed by co-feeding either acetic acid or 3,5-dimethyl pyridine. Kinetic deactivation parameters were determined by modeling experimental data with a deactivation model with residual activity (DMRA). MgY produced essentially xylenes and alkylated C9+ compounds. This zeolite was deactivated only by co-feeding 3,5-dimethyl pyridine, thereby indicating that exclusively acid sites are involved in the ring alkylation of toluene with methanol. In contrast, zeolite CsY formed mainly styrene and ethylbenzene, and was strongly deactivated by the addition of either acid or base compounds. Infrared characterization showed that zeolite CsY contains Lewis acid (Cs+)–base (O2-) pairs capable of adsorbing bidentate carbonates but does not exhibit Brönsted acidity. Thus, selective poisoning results and sample characterization showed that bimolecular side-chain alkylation reaction on CsY requires a specific surface acid–base pairs configuration not only for activating toluene and methanol, but also for promoting the rate-limiting step.
AB - Selective acid–base poisoning of the alkylation of toluene with methanol was studied over alkali and alkaline-earth exchanged Y zeolites. Surface acid–base properties of the samples were determined by infrared spectroscopy using carbon dioxide and pyridine as probe molecules. Selective poisoning experiments were performed by co-feeding either acetic acid or 3,5-dimethyl pyridine. Kinetic deactivation parameters were determined by modeling experimental data with a deactivation model with residual activity (DMRA). MgY produced essentially xylenes and alkylated C9+ compounds. This zeolite was deactivated only by co-feeding 3,5-dimethyl pyridine, thereby indicating that exclusively acid sites are involved in the ring alkylation of toluene with methanol. In contrast, zeolite CsY formed mainly styrene and ethylbenzene, and was strongly deactivated by the addition of either acid or base compounds. Infrared characterization showed that zeolite CsY contains Lewis acid (Cs+)–base (O2-) pairs capable of adsorbing bidentate carbonates but does not exhibit Brönsted acidity. Thus, selective poisoning results and sample characterization showed that bimolecular side-chain alkylation reaction on CsY requires a specific surface acid–base pairs configuration not only for activating toluene and methanol, but also for promoting the rate-limiting step.
U2 - 10.1016/j.apcata.2004.08.007
DO - 10.1016/j.apcata.2004.08.007
M3 - Article
SN - 0926-860X
VL - 276
SP - 207
EP - 215
JO - Applied Catalysis. A, General
JF - Applied Catalysis. A, General
IS - 1-2
ER -