TY - JOUR
T1 - Active beam spectroscopy for ITER
AU - Hellermann, von, M.G.
AU - Barnsley, R.
AU - Biel, W. (Wolfgang)
AU - Delabie, Ephrem
AU - Hawkes, N.
AU - Jaspers, Roger
AU - Johnson, D.
AU - Klinkhamer, F.
AU - Lischtschenko, O.
AU - Marchuk, O.
AU - Schunke, B.
AU - Singh, M.J.
AU - Snijders, Bart
AU - Summers, H.P.
AU - Thomas, D.
AU - Tugarinov, S.
AU - Vasu, P.
PY - 2010
Y1 - 2010
N2 - Since the first feasibility studies of active beam spectroscopy on ITER in 1995 the proposed diagnostic has developed into a well advanced and mature system. Substantial progress has been achieved on the physics side including comprehensive performance studies based on an advanced predictive code, which simulates active and passive features of the expected spectral ranges. The simulation has enabled detailed specifications for an optimized instrumentation and has helped to specify suitable diagnostic neutral beam parameters. Four ITER partners share presently the task of developing a suite of ITER active beam diagnostics, which make use of the two 0.5 MeV/amu 18 MW heating neutral beams and a dedicated 0.1 MeV/amu, 3.6 MW diagnostic neutral beam. The IN ITER team is responsible for the DNB development and also for beam physics related aspects of the diagnostic. The RF will be responsible for edge CXRS system covering the outer region of the plasma (1>r/a>0.4) using an equatorial observation port, and the EU will develop the core CXRS system for the very core (0
AB - Since the first feasibility studies of active beam spectroscopy on ITER in 1995 the proposed diagnostic has developed into a well advanced and mature system. Substantial progress has been achieved on the physics side including comprehensive performance studies based on an advanced predictive code, which simulates active and passive features of the expected spectral ranges. The simulation has enabled detailed specifications for an optimized instrumentation and has helped to specify suitable diagnostic neutral beam parameters. Four ITER partners share presently the task of developing a suite of ITER active beam diagnostics, which make use of the two 0.5 MeV/amu 18 MW heating neutral beams and a dedicated 0.1 MeV/amu, 3.6 MW diagnostic neutral beam. The IN ITER team is responsible for the DNB development and also for beam physics related aspects of the diagnostic. The RF will be responsible for edge CXRS system covering the outer region of the plasma (1>r/a>0.4) using an equatorial observation port, and the EU will develop the core CXRS system for the very core (0
U2 - 10.1016/j.nima.2010.04.011
DO - 10.1016/j.nima.2010.04.011
M3 - Article
SN - 0168-9002
VL - 623
SP - 720
EP - 725
JO - Nuclear Instruments and Methods in Physics Research. Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
JF - Nuclear Instruments and Methods in Physics Research. Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
IS - 2
ER -