Abstract
The development of metamaterials enables to engineer materials with extraordinary features, beyond the traditional limits. In the linear dynamic regime, metamaterials have already enabled a wide range of new functionalities, such as cloaking, super-lenses, and signal filtering. The consideration of nonlinearity has the potential to bring a myriad of new opportunities for metamaterials. Within the 4TU.High-Tech Materials research program, metamaterials were developed with nonlinear resonant inclusions. Results of this
research show emergent dynamic features which may enable tunability, new mechanisms of sound and vibration attenuation, and the realization of a ‘mechanical diode’. Besides, efficient computational schemes are being developed for optimal analysis of the emergent
metastructure design.
research show emergent dynamic features which may enable tunability, new mechanisms of sound and vibration attenuation, and the realization of a ‘mechanical diode’. Besides, efficient computational schemes are being developed for optimal analysis of the emergent
metastructure design.
Original language | English |
---|---|
Pages (from-to) | 30-35 |
Number of pages | 6 |
Journal | Innovative Materials |
Volume | 4 |
Publication status | Published - 2018 |