Accelerating stochastic simulations of mechanistic models of biological systems: advantages and issues in the parallelization on graphics processing units

Paolo Cazzaniga, Marco S. Nobile, Andrea Tangherloni, Daniela Besozzi

Research output: Chapter in Book/Report/Conference proceedingChapterAcademicpeer-review

Original languageEnglish
Title of host publicationQuantitative Biology
Subtitle of host publicationComputational Methods and Examples
EditorsBrian Munsky, William Hlavacek, Lev Tsimring
Place of PublicationMassachusetts
PublisherMIT Press
Pages423-440
Number of pages18
ISBN (Print)9780262038089
Publication statusPublished - Aug 2018
Externally publishedYes

Cite this

Cazzaniga, P., Nobile, M. S., Tangherloni, A., & Besozzi, D. (2018). Accelerating stochastic simulations of mechanistic models of biological systems: advantages and issues in the parallelization on graphics processing units. In B. Munsky, W. Hlavacek, & L. Tsimring (Eds.), Quantitative Biology: Computational Methods and Examples (pp. 423-440). Massachusetts: MIT Press.
Cazzaniga, Paolo ; Nobile, Marco S. ; Tangherloni, Andrea ; Besozzi, Daniela. / Accelerating stochastic simulations of mechanistic models of biological systems : advantages and issues in the parallelization on graphics processing units. Quantitative Biology: Computational Methods and Examples. editor / Brian Munsky ; William Hlavacek ; Lev Tsimring. Massachusetts : MIT Press, 2018. pp. 423-440
@inbook{07bb87d076974f54a0fd8ca86a537681,
title = "Accelerating stochastic simulations of mechanistic models of biological systems: advantages and issues in the parallelization on graphics processing units",
author = "Paolo Cazzaniga and Nobile, {Marco S.} and Andrea Tangherloni and Daniela Besozzi",
year = "2018",
month = "8",
language = "English",
isbn = "9780262038089",
pages = "423--440",
editor = "Brian Munsky and William Hlavacek and Lev Tsimring",
booktitle = "Quantitative Biology",
publisher = "MIT Press",

}

Cazzaniga, P, Nobile, MS, Tangherloni, A & Besozzi, D 2018, Accelerating stochastic simulations of mechanistic models of biological systems: advantages and issues in the parallelization on graphics processing units. in B Munsky, W Hlavacek & L Tsimring (eds), Quantitative Biology: Computational Methods and Examples. MIT Press, Massachusetts, pp. 423-440.

Accelerating stochastic simulations of mechanistic models of biological systems : advantages and issues in the parallelization on graphics processing units. / Cazzaniga, Paolo; Nobile, Marco S.; Tangherloni, Andrea; Besozzi, Daniela.

Quantitative Biology: Computational Methods and Examples. ed. / Brian Munsky; William Hlavacek; Lev Tsimring. Massachusetts : MIT Press, 2018. p. 423-440.

Research output: Chapter in Book/Report/Conference proceedingChapterAcademicpeer-review

TY - CHAP

T1 - Accelerating stochastic simulations of mechanistic models of biological systems

T2 - advantages and issues in the parallelization on graphics processing units

AU - Cazzaniga, Paolo

AU - Nobile, Marco S.

AU - Tangherloni, Andrea

AU - Besozzi, Daniela

PY - 2018/8

Y1 - 2018/8

M3 - Chapter

SN - 9780262038089

SP - 423

EP - 440

BT - Quantitative Biology

A2 - Munsky, Brian

A2 - Hlavacek, William

A2 - Tsimring, Lev

PB - MIT Press

CY - Massachusetts

ER -

Cazzaniga P, Nobile MS, Tangherloni A, Besozzi D. Accelerating stochastic simulations of mechanistic models of biological systems: advantages and issues in the parallelization on graphics processing units. In Munsky B, Hlavacek W, Tsimring L, editors, Quantitative Biology: Computational Methods and Examples. Massachusetts: MIT Press. 2018. p. 423-440