A variational Germano approach for stabilized finite element methods

I. Akkerman, K.G. Zee, van der, S.J. Hulshoff

Research output: Contribution to journalArticleAcademicpeer-review

9 Citations (Scopus)


In this paper the recently introduced Variational Germano procedure is revisited. The procedure is explained using commutativity diagrams. A general Germano identity for all types of discretizations is derived. This relation is similar to the Variational Germano identity, but is not restricted to variational numerical methods. Based on the general Germano identity an alternative algorithm, in the context of stabilized methods, is proposed. This partitioned algorithm consists of distinct building blocks. Several options for these building blocks are presented and analyzed and their performance is tested using a stabilized finite element formulation for the convection–diffusion equation. Non-homogenous boundary conditions are shown to pose a serious problem for the dissipation method. This is not the case for the least-squares method although here the issue of basis dependence occurs. The latter can be circumvented by minimizing a dual-norm of the weak relation instead of the Euclidean norm of the discrete residual.
Original languageEnglish
Pages (from-to)502-513
JournalComputer Methods in Applied Mechanics and Engineering
Issue number9-12
Publication statusPublished - 2010


Dive into the research topics of 'A variational Germano approach for stabilized finite element methods'. Together they form a unique fingerprint.

Cite this