Abstract
The main goal of this work is to model size effects, as they occur in materials with an intrinsic microstructure at the consideration of specimens that are not by orders larger than this microstructure. The micromorphic continuum theory as a generalized continuum theory is well suited to account for the occuring size effects. Thereby additional degrees of freedoms capture the independent deformations of these microstructures, while they provide additional balance equation. In this thesis, the deformational and configurational mechanics of the micromorphic continuum is exploited in a finite-deformation setting. A constitutive and numerical framework is developed, in which also the material-force method is advanced. Furthermore the multiscale modelling of thin material layers with a heterogeneous substructure is of interest. To this end, a computational homogenization framework is developed, which allows to obtain the constitutive relation between traction and separation based on the properties of the underlying micromorphic mesostructure numerically in a nested solution scheme. Within the context of micromorphic continuum mechanics, concepts of both gradient and micromorphic plasticity are developed by systematically varying key ingredients of the respective formulations.
Original language | English |
---|---|
Qualification | Doctor of Philosophy |
Awarding Institution |
|
Supervisors/Advisors |
|
Award date | 28 Apr 2009 |
Place of Publication | Kaiserslautern |
Publisher | |
Print ISBNs | 978-3-939432-80-7 |
Publication status | Published - 2008 |