A three dimensional continuum model of skeletal muscle

Research output: Chapter in Book/Report/Conference proceedingChapterAcademicpeer-review

Abstract

Skeletal muscle consists of a nonlinear, anisotropic, fibrous contractile material. Besides, these properties are distributed non-uniformly across the muscle, which itself can have a complex geometry. Traditional models can not predict the actual local behaviour of the muscle, because uniformity and/or simple geometries are assumed. We present a model, which takes into account the active contractile properties using a Distributed Moment approximated Huxley model and the passive tissue with a three dimensional nonlinear anisotropic elastic model. The model is approximated numerically with the finite element method. The main features of the model are illustrated with simulations of an isometric contraction of a geometrically simple muscle for a plane stress and a plane strain situation.Large differences between both situations demonstrate the importance of this type of modelling.
Original languageEnglish
Title of host publicationComputer Methods in Biomechanics & Biomedical Engineering -2
EditorsJ. Middleton, M.L. Jones, G.N. Pande
Place of PublicationAmsterdam
PublisherGordon and Breach Science Publishers
Pages543-551
Number of pages10
ISBN (Print)90-5699-206-6
Publication statusPublished - 1998

    Fingerprint

Cite this

Gielen, A. W. J., Bovendeerd, P. H. M., & Janssen, J. D. (1998). A three dimensional continuum model of skeletal muscle. In J. Middleton, M. L. Jones, & G. N. Pande (Eds.), Computer Methods in Biomechanics & Biomedical Engineering -2 (pp. 543-551). Amsterdam: Gordon and Breach Science Publishers.