TY - JOUR
T1 - A supramolecular platform for the introduction of Fc-fusion bioactive proteins on biomaterial surfaces
AU - Sahlgren, Cecilia M.
AU - de Jong, Simone M.J.
AU - Stassen, Oscar M.J.A.
AU - Sahlgren, Cecilia M.
AU - Dankers, Patricia Y.W.
PY - 2019/8/9
Y1 - 2019/8/9
N2 - Bioorthogonal chemistry is an excellent method for functionalization of biomaterials with bioactive molecules, as it allows for decoupling of material processing and bioactivation. Here, we report on a modular system created by means of tetrazine/trans-cyclooctene (Tz/TCO) click chemistry undergoing an inverse electron demand Diels-Alder cycloaddition. A reactive supramolecular surface based on ureido-pyrimidinones (UPy) is generated via a UPy-Tz additive, in order to introduce a versatile TCO-protein G conjugate for immobilization of Fc-fusion proteins. As a model bioactive protein, we introduced Fc-Jagged1, a Notch ligand, to induce Notch signaling activity on the material. Interestingly, HEK293 FLN1 cells expressing the Notch1 receptor were repelled by films modified with TCO-protein G but adhered and spread on functionalized electrospun meshes. This indicates that the material processing method influences the biocompatibility of the postmodification. Notch signaling activity was upregulated 5.6-fold with respect to inactive controls on electrospun materials modified with TCO-protein G/Fc-Jagged1. Furthermore, downstream effects of Notch signaling were detected on the gene level in vascular smooth muscle cells expressing the Notch3 receptor. Taken together, our results demonstrate the successful use of a modular supramolecular system for the postprocessing modification of solid materials with functional proteins.
AB - Bioorthogonal chemistry is an excellent method for functionalization of biomaterials with bioactive molecules, as it allows for decoupling of material processing and bioactivation. Here, we report on a modular system created by means of tetrazine/trans-cyclooctene (Tz/TCO) click chemistry undergoing an inverse electron demand Diels-Alder cycloaddition. A reactive supramolecular surface based on ureido-pyrimidinones (UPy) is generated via a UPy-Tz additive, in order to introduce a versatile TCO-protein G conjugate for immobilization of Fc-fusion proteins. As a model bioactive protein, we introduced Fc-Jagged1, a Notch ligand, to induce Notch signaling activity on the material. Interestingly, HEK293 FLN1 cells expressing the Notch1 receptor were repelled by films modified with TCO-protein G but adhered and spread on functionalized electrospun meshes. This indicates that the material processing method influences the biocompatibility of the postmodification. Notch signaling activity was upregulated 5.6-fold with respect to inactive controls on electrospun materials modified with TCO-protein G/Fc-Jagged1. Furthermore, downstream effects of Notch signaling were detected on the gene level in vascular smooth muscle cells expressing the Notch3 receptor. Taken together, our results demonstrate the successful use of a modular supramolecular system for the postprocessing modification of solid materials with functional proteins.
U2 - 10.1021/acsapm.9b00334
DO - 10.1021/acsapm.9b00334
M3 - Article
C2 - 31423488
VL - 1
SP - 2044
EP - 2054
JO - ACS Applied Polymer Materials
JF - ACS Applied Polymer Materials
SN - 2637-6105
IS - 8
ER -