A simple factor-2/3 approximation algorithm for two-circle point labeling

A. Wolff, M. Thon, Y.F. Xu

    Research output: Contribution to journalArticleAcademicpeer-review

    2 Citations (Scopus)


    Given a set P of n points in the plane, the two-circle point-labeling problem consists of placing 2n uniform, non-intersecting, maximum-size open circles such that each point touches exactly two circles. It is known that this problem is NP-hard to approximate. In this paper we give a simple algorithm that improves the best previously known approximation factor from to 2/3. The main steps of our algorithm are as follows. We first compute the Voronoi diagram, then label each point optimally within its cell, compute the smallest label diameter over all points and finally shrink all labels to this size. We keep the O(n log n) time and O(n) space bounds of the previously best algorithm.
    Original languageEnglish
    Pages (from-to)269-282
    JournalInternational Journal of Computational Geometry and Applications
    Issue number4
    Publication statusPublished - 2002


    Dive into the research topics of 'A simple factor-2/3 approximation algorithm for two-circle point labeling'. Together they form a unique fingerprint.

    Cite this