A robust linearization scheme for finite volume based discretizations for simulation of two-phase flow in porous media

F.A. Radu, J.M. Nordbotten, I.S. Pop, K. Kumar

Research output: Contribution to journalArticleAcademicpeer-review

49 Citations (Scopus)
89 Downloads (Pure)

Abstract

In this work we consider a mathematical model for two-phase flow in porous media. The fluids are assumed immiscible and incompressible and the solid matrix non-deformable. The mathematical model for the two-phase flow is written in terms of the global pressure and a complementary pressure (obtained by using the Kirchhoff transformation) as primary unknowns. For the spatial discretization, finite volumes have been used (more precisely the multi-point flux approximation method) and in time the backward Euler method has been employed. We present here a new linearization scheme for the nonlinear system arising after the temporal and spatial discretization. We show that the scheme is linearly convergent. Numerical experiments are presented and sustain the theoretical results. Keywords: two-phase flow, linearization schemes, finite volume, MPFA, convergence analysis.
Original languageEnglish
Pages (from-to)134-141
JournalJournal of Computational and Applied Mathematics
Volume289
DOIs
Publication statusPublished - 2015

Fingerprint Dive into the research topics of 'A robust linearization scheme for finite volume based discretizations for simulation of two-phase flow in porous media'. Together they form a unique fingerprint.

Cite this