TY - JOUR
T1 - A probabilistic model for robust localization based on a binaural auditory front-end
AU - May, T.
AU - Par, van de, S.L.J.D.E.
AU - Kohlrausch, A.G.
PY - 2011
Y1 - 2011
N2 - Although extensive research has been done in the field of machine-based localization, the degrading effect of reverberation and the presence of multiple sources on localization performance has remained a major problem. Motivated by the ability of the human auditory system to robustly analyze complex acoustic scenes, the associated peripheral stage is used in this paper as a front-end to estimate the azimuth of sound sources based on binaural signals. One classical approach to localize an acoustic source in the horizontal plane is to estimate the interaural time difference (ITD) between both ears by searching for the maximum in the cross-correlation function. Apart from ITDs, the interaural level difference (ILD) can contribute to localization, especially at higher frequencies where the wavelength becomes smaller than the diameter of the head, leading to ambiguous ITD information. The interdependency of ITD and ILD on azimuth is a complex pattern that depends also on the room acoustics, and is therefore learned by azimuth-dependent Gaussian mixture models (GMMs). Multiconditional training is performed to take into account the variability of the binaural features which results from multiple sources and the effect of reverberation. The proposed localization model outperforms state-of-the-art localization techniques in simulated adverse acoustic conditions.
AB - Although extensive research has been done in the field of machine-based localization, the degrading effect of reverberation and the presence of multiple sources on localization performance has remained a major problem. Motivated by the ability of the human auditory system to robustly analyze complex acoustic scenes, the associated peripheral stage is used in this paper as a front-end to estimate the azimuth of sound sources based on binaural signals. One classical approach to localize an acoustic source in the horizontal plane is to estimate the interaural time difference (ITD) between both ears by searching for the maximum in the cross-correlation function. Apart from ITDs, the interaural level difference (ILD) can contribute to localization, especially at higher frequencies where the wavelength becomes smaller than the diameter of the head, leading to ambiguous ITD information. The interdependency of ITD and ILD on azimuth is a complex pattern that depends also on the room acoustics, and is therefore learned by azimuth-dependent Gaussian mixture models (GMMs). Multiconditional training is performed to take into account the variability of the binaural features which results from multiple sources and the effect of reverberation. The proposed localization model outperforms state-of-the-art localization techniques in simulated adverse acoustic conditions.
U2 - 10.1109/TASL.2010.2042128
DO - 10.1109/TASL.2010.2042128
M3 - Article
SN - 1558-7916
VL - 19
SP - 1
EP - 13
JO - IEEE Transactions on Audio, Speech, and Language Processing
JF - IEEE Transactions on Audio, Speech, and Language Processing
IS - 1
ER -