A patient-specific microtissue platform to compare biological properties in vitro with patient outcome for anterior cruciate ligament reconstruction

Marc van Vijven, J.N. Kimenai, Bart van Groningen, Marieke C. van der Steen, Rob P.A. Janssen, Keita Ito, Jasper Foolen

Research output: Contribution to journalMeeting AbstractAcademic


After anterior cruciate ligament (ACL) rupture, reconstructive surgery with a hamstring tendon autograft is often performed. Despite overall good results, ACL re-rupture occurs in up to 10% of the patient population, increasing to 30% of the cases for patients aged under 20 years. This can be related to tissue remodelling in the first months to years after surgery, which compromises the graft's mechanical strength. Resident graft fibroblasts secrete matrix metalloproteinases (MMPs), which break down the collagen I extracellular matrix. After necrosis of these fibroblasts, myofibroblasts repopulate the graft, and deposit more collagen III rather than collagen I. Eventually, the cellular and matrix properties converge towards those of the native ACL, but full restoration of the ACL properties is not achieved. It is unknown how inter-patient differences in tissue remodelling capacity contribute to ACL graft rupture risk. This research measured patient-specific tissue remodelling-related properties of human hamstring tendon-derived cells in an in vitro micro-tissue platform, in order to identify potential biological predictors for graft rupture.

Human hamstring tendon-derived cells were obtained from remnant autograft tissue after ACL reconstructions. These cells were seeded in collagen I gels on a micro-tissue platform to assess inter-patient cellular differences in tissue remodelling capacity. Remodelling was induced by removing the outermost micro-posts, and micro-tissue compaction over time was assessed using transmitted light microscopy. Protein expression of tendon marker tenomodulin and myofibroblast marker α-smooth muscle actin (αSMA) were measured using Western blot. Expression and activity of remodelling marker MMP2 were determined using gelatin zymography.

Cells were obtained from 12 patients (aged 12–51 years). Patient-specific variations in micro-tissue compaction speed or magnitude were observed. Up to 50-fold differences in αSMA expression were found between patients, although these did not correlate with faster or stronger compaction. Surprisingly, tenomodulin was only detected in samples obtained from two patients. Total MMP2 expression varied between patients, but no large differences in active fractions were found. No correlation of patient age with any of the remodelling-related factors was detected.

Remodelling-related biological differences between patient tendon-derived cells could be assessed with the presented micro-tissue platform, and did not correlate with age. This demonstrates the need to compare this biological variation in vitro - especially cells with extreme properties - to clinical outcome. Sample size is currently increased, and patient outcome will be determined. Combined with results obtained from the in vitro platform, this could lead to a predictive tool to identify patients at risk for graft rupture.
Original languageEnglish
JournalThe Bone & Joint Journal
Issue numberSUPP_4 / MARCH 2021
Publication statusPublished - 12 Mar 2021


Dive into the research topics of 'A patient-specific microtissue platform to compare biological properties in vitro with patient outcome for anterior cruciate ligament reconstruction'. Together they form a unique fingerprint.

Cite this