A novel Riemannian metric for geodesic tractography in DTI

A. Fuster, A. Tristán-Vega, T.C.J. Dela Haije, C.-F. Westin, L.M.J. Florack

Research output: Chapter in Book/Report/Conference proceedingConference contributionAcademicpeer-review

12 Citations (Scopus)
1 Downloads (Pure)

Abstract

One of the approaches in diffusion tensor imaging is to consider a Riemannian metric given by the inverse diffusion tensor. Such a metric is used for white matter tractography and connectivity analysis. We propose a modified metric tensor given by the adjugate rather than the inverse diffusion tensor. Tractography experiments on real brain diffusion data show improvement in the vicinity of isotropic diffusion regions compared to results for inverse (sharpened) diffusion tensors.
Original languageEnglish
Title of host publicationComputational Diffusion MRI and Brain Connectivity (MICCAI Workshop, Nagoya, Japan, September 22, 2013)
EditorsT. Schultz, A. Venkataraman, L. O'Donnell, E. Panagiotaki
Place of PublicationBerlin
PublisherSpringer
Pages97-104
ISBN (Print)978-3-319-02474-5
DOIs
Publication statusPublished - 2014
EventMICCAI 2013 Workshop on Computational Diffusion MRI (CDMRI '13), September 22, 2013, Nagoya, Japan - Nagoya, Japan
Duration: 22 Sep 201322 Sep 2013
http://cmic.cs.ucl.ac.uk/cdmri13/

Publication series

NameMathematics and Visualization
ISSN (Print)1612-3786

Workshop

WorkshopMICCAI 2013 Workshop on Computational Diffusion MRI (CDMRI '13), September 22, 2013, Nagoya, Japan
Abbreviated titleCDMRI '13
CountryJapan
CityNagoya
Period22/09/1322/09/13
OtherWorkshop held in conjunction with 16th International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI 2013)
Internet address

    Fingerprint

Cite this

Fuster, A., Tristán-Vega, A., Dela Haije, T. C. J., Westin, C-F., & Florack, L. M. J. (2014). A novel Riemannian metric for geodesic tractography in DTI. In T. Schultz, A. Venkataraman, L. O'Donnell, & E. Panagiotaki (Eds.), Computational Diffusion MRI and Brain Connectivity (MICCAI Workshop, Nagoya, Japan, September 22, 2013) (pp. 97-104). (Mathematics and Visualization). Berlin: Springer. https://doi.org/10.1007/978-3-319-02475-2_9