Abstract
This paper introduces a novel maximum likelihood approach to determine the local thermal transport coefficients belonging to diffusion and convection from excitation (perturbative) transport experiments. It extends previous work developed for linear (slab) geometry to cylindrical (toroidal) geometry for fusion reactors. The previous linear geometry approach is based on analytic solutions of the partial differential equation. However, for cylindrical geometries with convection the analytic solutions are confluent hypergeometric functions (CHFs) with complex valued arguments. Most numerical libraries do not support CHFs evaluation with complex valued arguments. Hence, this paper proposes the use of an ultra-fast transfer function evaluation based on sparse numerical solutions for the discretized partial differential equation. This solution is implemented in MATLAB
Original language | English |
---|---|
Title of host publication | 2019 IEEE 58th Conference on Decision and Control, CDC 2019 |
Place of Publication | Piscataway |
Publisher | Institute of Electrical and Electronics Engineers |
Pages | 3220-3226 |
Number of pages | 7 |
ISBN (Electronic) | 9781728113982 |
DOIs | |
Publication status | Published - Dec 2019 |
Event | 58th IEEE Conference on Decision and Control, CDC 2019 - Nice, France, Nice, France Duration: 11 Dec 2019 → 13 Dec 2019 Conference number: 58 https://cdc2019.ieeecss.org/ |
Conference
Conference | 58th IEEE Conference on Decision and Control, CDC 2019 |
---|---|
Abbreviated title | CDC 2019 |
Country/Territory | France |
City | Nice |
Period | 11/12/19 → 13/12/19 |
Internet address |