TY - JOUR

T1 - A non-self-adjoint quadratic eigenvalue problem describing a fluid-solid interaction Part II : analysis of convergence

AU - Bourne, D.P.

AU - Elman, H.

AU - Osborn, J.E.

PY - 2009

Y1 - 2009

N2 - This paper is the second part of a two-part paper treating a non-self-adjoint quadratic eigenvalue problem for the linear stability of solutions to the Taylor-Couette problem for flow of a viscous liquid in a deformable cylinder, with the cylinder modelled as a membrane. The first part formulated the problem, analyzed it, and presented computations. In this second part, we first give a weak formulation of the problem, carefully contrived so that the pressure boundary terms are eliminated from the equations. We prove that the bilinear forms appearing in the weak formulation satisfy continuous inf-sup conditions. We combine a Fourier expansion with the finite element method to produce a discrete problem satisfying discrete inf-sup conditions. Finally, the Galerkin approximation theory for polynomial eigenvalue problems is applied to prove convergence of the spectrum.

AB - This paper is the second part of a two-part paper treating a non-self-adjoint quadratic eigenvalue problem for the linear stability of solutions to the Taylor-Couette problem for flow of a viscous liquid in a deformable cylinder, with the cylinder modelled as a membrane. The first part formulated the problem, analyzed it, and presented computations. In this second part, we first give a weak formulation of the problem, carefully contrived so that the pressure boundary terms are eliminated from the equations. We prove that the bilinear forms appearing in the weak formulation satisfy continuous inf-sup conditions. We combine a Fourier expansion with the finite element method to produce a discrete problem satisfying discrete inf-sup conditions. Finally, the Galerkin approximation theory for polynomial eigenvalue problems is applied to prove convergence of the spectrum.

U2 - 10.3934/cpaa.2009.8.143

DO - 10.3934/cpaa.2009.8.143

M3 - Article

VL - 8

SP - 143

EP - 160

JO - Communications on Pure and Applied Analysis

JF - Communications on Pure and Applied Analysis

SN - 1534-0392

IS - 1

ER -