A new class of codes meeting the Griesmer bound

H.C.A. Tilborg, van, T. Helleseth

Research output: Contribution to journalArticleAcademicpeer-review

14 Citations (Scopus)

Abstract

An infinite sequence ofk-dimensional binary linear block codes is constructed with parametersn=2^{k}+2^{k-2}-15,d=2^{k-1}+2^{k-3}-8,k geq 7. Fork geq 8these codes are unique, while there are five nonisomorphic codes fork=7. By shortening these codes in an appropriate way, one finds codes meeting the Griesmer bound for2^{k-1}+2^{k-3}-15 leq d leq 2^{k-1}+2^{k-3}-8; k geq 7.
Original languageEnglish
Pages (from-to)548-555
Number of pages8
JournalIEEE Transactions on Information Theory
Volume27
Issue number5
DOIs
Publication statusPublished - 1981

Fingerprint

Dive into the research topics of 'A new class of codes meeting the Griesmer bound'. Together they form a unique fingerprint.

Cite this