A multiscale molecular dynamics / extended finite element method for dynamic fracture

P. Aubertin, J. Rethore, R. Borst, de

    Research output: Chapter in Book/Report/Conference proceedingChapterAcademic

    Abstract

    A multiscale method is presented which couples a molecular dynamics approach for describing fracture at the crack tip with an extended finite element method for discretizing the remainder of the domain. After recalling the basic equations of molecular dynamics and continuum mechanics the discretization is discussed for the continuum subdomain where the partition-of-unity property of finite element shape functions is used, since in this fashion the crack in the wake of its tip is naturally modelled as a traction-free discontinuity. Next, the zonal coupling method between the atomistic and continuum models is described, including an assessment of the energy transfer between both domains for a one-dimensional problem. It is discussed how the stress has been computed in the atomistic subdomain, and a two-dimensional computation is presented of dynamic fracture using the coupled model. The result shows multiple branching, which is reminiscent of recent results from simulations on dynamic fracture using cohesive-zone models.
    Original languageEnglish
    Title of host publicationComputer Methods in Mechanics Lectures of the CMM 2009
    EditorsM. Kuczma, K. Wilmanski
    Place of PublicationBerlin
    PublisherSpringer
    Pages211-237
    ISBN (Print)978-3-642-05240-8
    DOIs
    Publication statusPublished - 2010

    Publication series

    NameAdvanced structured materials
    ISSN (Print)1869-8433

    Fingerprint

    Dive into the research topics of 'A multiscale molecular dynamics / extended finite element method for dynamic fracture'. Together they form a unique fingerprint.

    Cite this