Abstract
Studying binding interactions involving living cells requires a platform that carefully mimics the physiological parameters that govern these phenomena. Very often the amount of ligands that receptors can bind affect overall binding strength as is the case in cell adhesion. In addition, the physical environment can strongly influence these processes. This is exemplified by the effect of shear stress in catch-bond-mediated binding of bacteria. Traditional analysis techniques do not allow to probe these factors simultaneously. To this end, continuous ligand gradients in locked-in supported lipid bilayers (SLBs) are prepared in a microfluidic device to control fluid flow. This platform allows for one-pot characterization of cell surface binding events and 1) the effect of ligand density and 2) shear stress, simultaneously. The model interaction between the FimH receptor found on Escherichia coli and mannose found on the mammalian cell membrane is used to evaluate the platform. Using a single chip, specific E. coli ORN 178 adhesion (K d of 0.9 × 10-21 m), detachment and displacement are shown to depend on the mannose-density and shear stress. For the first time, these effects are studied in a single chip device with high quality. This chip provides entry to further our understanding of other cell-cell interactions.
Original language | English |
---|---|
Article number | 1600055 |
Number of pages | 6 |
Journal | Advanced Materials Interfaces |
Volume | 3 |
Issue number | 9 |
DOIs | |
Publication status | Published - 6 May 2016 |
Externally published | Yes |
Bibliographical note
Publisher Copyright:© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Keywords
- carbohydrates
- cells
- monolayers
- supramolecular chemistry
- surface chemistry