A low-memory algorithm for finding short product representations in finite groups

G. Bisson, A.V. Sutherland

Research output: Book/ReportReportAcademic

Abstract

We describe a space-efficient algorithm for solving a generalization of the subset sum problem in a finite group G, using a Pollard-rho approach. Given an element z and a sequence of elements S, our algorithm attempts to find a subsequence of S whose product in G is equal to z. For a random sequence S of length d*log2(n), where n=#G and d>=2 is a constant, we find that its expected running time is O(sqrt(n)*log(n)) group operations (we give a rigorous proof for d>4), and it only needs to store O(1) group elements. We consider applications to class groups of imaginary quadratic fields, and to finding isogenies between elliptic curves over a finite field.
Original languageEnglish
PublisherIACR
Number of pages12
Publication statusPublished - 2011

Publication series

NameCryptology ePrint Archive
Volume2011/004

Fingerprint Dive into the research topics of 'A low-memory algorithm for finding short product representations in finite groups'. Together they form a unique fingerprint.

Cite this