A linear bound for the Colin de Verdiére parameter $μ$ for graphs embedded on surfaces

Camille Lanuel, Francis Lazarus, Rudi Pendavingh

Research output: Contribution to journalArticleAcademic

59 Downloads (Pure)

Abstract

We provide a combinatorial and self-contained proof that for all graphs $G$ embedded on a surface $S$, the Colin de Verdi\`ere parameter $\mu(G)$ is upper bounded by $7-2\chi(S)$.
Original languageEnglish
Article number2303.00556
Number of pages9
JournalarXiv
Volume2023
DOIs
Publication statusPublished - 1 Mar 2023

Keywords

  • math.CO
  • cs.CG

Fingerprint

Dive into the research topics of 'A linear bound for the Colin de Verdiére parameter $μ$ for graphs embedded on surfaces'. Together they form a unique fingerprint.

Cite this