A high dielectric constant non-fullerene acceptor for efficient bulk-heterojunction organic solar cells

X. Liu, B. Xie, C. Duan, Z. Wang, B. Fan, K. Zhang, B. Lin, F.J.M. Colberts, W. Ma, R.A.J. Janssen, F. Huang, Y. Cao

Research output: Contribution to journalArticleAcademicpeer-review

241 Citations (Scopus)


The majority of organic semiconductors have a low relative dielectric constant (ϵr < 6), which is an important limitation for organic solar cells (OSCs). A high dielectric constant would reduce the exciton binding energy, reduce charge carrier recombination losses, and thereby enhance the overall device performance of OSCs. However, the development of organic/polymeric semiconductors with higher relative dielectric constants (ϵr > 6) has attracted a very limited attention. Moreover, high performance OSCs based on high dielectric constant photovoltaic materials are still in their infancy. Herein, we report an oligoethylene oxide side chain-containing non-fullerene acceptor (ITIC-OE) with a high relative dielectric constant of ϵr ≈ 9.4, which is two times larger than that of its alkyl chain-containing counterpart ITIC. Encouragingly, the OSCs based on ITIC-OE show a high power conversion efficiency of 8.5%, which is the highest value for OSCs that employ high dielectric constant materials. Nevertheless, this value is lower than those of ITIC-based control devices. The less phase-separated morphology in blend films due to the reduced crystallinity of ITIC-OE and the too good miscibility between PBDB-T and ITIC-OE are responsible for the lower device performance. This work suggests additional prerequisites to make high dielectric constants play a significant role in OSCs.

Original languageEnglish
Pages (from-to)395-403
Number of pages9
JournalJournal of Materials Chemistry A
Issue number2
Publication statusPublished - 14 Jan 2018


Dive into the research topics of 'A high dielectric constant non-fullerene acceptor for efficient bulk-heterojunction organic solar cells'. Together they form a unique fingerprint.

Cite this