TY - JOUR
T1 - A fully photonics-based coherent radar system
AU - Ghelfi, P.
AU - Laghezza, F.
AU - Scotti, F.
AU - Serafino, G.
AU - Capria, A.
AU - Pinna, S.
AU - Onori, D.
AU - Porzi, C.
AU - Scaffardi, M.
AU - Malacarne, A.
AU - Vercesi, V.
AU - Lazzeri, E.
AU - Berizzi, F.
AU - Bogoni, A.
PY - 2014/3/1
Y1 - 2014/3/1
N2 - The next generation of radar (radio detection and ranging) systems needs to be based on software-defined radio to adapt to variable environments, with higher carrier frequencies for smaller antennas and broadened bandwidth for increased resolution1,2,3,4. Today’s digital microwave components (synthesizers and analogue-to-digital converters) suffer from limited bandwidth with high noise at increasing frequencies5,6,7, so that fully digital radar systems can work up to only a few gigahertz, and noisy analogue up- and downconversions are necessary for higher frequencies. In contrast, photonics provide high precision and ultrawide bandwidth8,9, allowing both the flexible generation of extremely stable radio-frequency signals with arbitrary waveforms up to millimetre waves10,11,12,13,14,15,16,17,18,19,20,21,22, and the detection of such signals and their precise direct digitization without downconversion23,24,25,26. Until now, the photonics-based generation and detection of radio-frequency signals have been studied separately and have not been tested in a radar system. Here we present the development and the field trial results of a fully photonics-based coherent radar demonstrator carried out within the project PHODIR27. The proposed architecture exploits a single pulsed laser for generating tunable radar signals and receiving their echoes, avoiding radio-frequency up- and downconversion and guaranteeing both the software-defined approach and high resolution. Its performance exceeds state-of-the-art electronics at carrier frequencies above two gigahertz, and the detection of non-cooperating aeroplanes confirms the effectiveness and expected precision of the system.
AB - The next generation of radar (radio detection and ranging) systems needs to be based on software-defined radio to adapt to variable environments, with higher carrier frequencies for smaller antennas and broadened bandwidth for increased resolution1,2,3,4. Today’s digital microwave components (synthesizers and analogue-to-digital converters) suffer from limited bandwidth with high noise at increasing frequencies5,6,7, so that fully digital radar systems can work up to only a few gigahertz, and noisy analogue up- and downconversions are necessary for higher frequencies. In contrast, photonics provide high precision and ultrawide bandwidth8,9, allowing both the flexible generation of extremely stable radio-frequency signals with arbitrary waveforms up to millimetre waves10,11,12,13,14,15,16,17,18,19,20,21,22, and the detection of such signals and their precise direct digitization without downconversion23,24,25,26. Until now, the photonics-based generation and detection of radio-frequency signals have been studied separately and have not been tested in a radar system. Here we present the development and the field trial results of a fully photonics-based coherent radar demonstrator carried out within the project PHODIR27. The proposed architecture exploits a single pulsed laser for generating tunable radar signals and receiving their echoes, avoiding radio-frequency up- and downconversion and guaranteeing both the software-defined approach and high resolution. Its performance exceeds state-of-the-art electronics at carrier frequencies above two gigahertz, and the detection of non-cooperating aeroplanes confirms the effectiveness and expected precision of the system.
U2 - 10.1038/nature13078
DO - 10.1038/nature13078
M3 - Article
C2 - 24646997
SN - 0028-0836
VL - 507
SP - 341
EP - 345
JO - Nature
JF - Nature
IS - 7492
ER -