TY - JOUR
T1 - A feasibility study of solar PV-powered electric cars using an interdisciplinary modeling approach for the electricity balance, CO2 emissions, and economic aspects
T2 - the cases of The Netherlands, Norway, Brazil, and Australia
AU - Sierra Rodriguez, Alonzo
AU - de Santana, Tiago
AU - MacGill, Iain
AU - Ekins-Daukes, N.J.
AU - Reinders, Angèle
PY - 2020/6/1
Y1 - 2020/6/1
N2 - Electric vehicles (EVs) are becoming an increasingly attractive option to effectively and economically efficiently reduce global fossil fuel consumption as well as CO2 emissions associated with road transportation. In general, the grid provides the electricity required to charge an EV's battery. However, it could be worthwhile to consider EV charging by specific solar photovoltaic (PV) systems to further facilitate the use of renewable energy and to minimize CO2 emissions. Additional benefits could, for instance, be less overloaded local grids and additional grid flexibility. Because little information and experiences exist with so-called solar PV-powered EVs, this paper explores how well PV systems—with the possible combination of battery energy storage systems (BESSs)—might contribute to charging of EVs in four different countries, namely, The Netherlands, Norway, Brazil, and Australia. To this end, a model has been developed that calculates the interactions between PV-BESS systems, EVs, and the grid in each country to determine the electricity balance, financial consequences, and avoided CO2 emissions of PV-powered EVs, compared with EVs that are solely charged by the grid, as well as conventional passenger cars with an internal combustion engine (ICE-V). It is logically found that in countries with a high irradiation, the whole year through, such as Brazil and Australia, solar PV-powered EVs can be operated more effectively than in countries with a high variability of irradiation over the year such as The Netherlands and Norway. If the charging system's PV share is increased from 0% to 50%, the number of required grid charging events per year can be reduced from 104 to 34 in The Netherlands and from 123 to 55 in Norway. PV charging can also reduce CO2 emissions of EVs by 18% to 93% as compared with ICE-Vs depending on the location. From a financial perspective, PV-powered EVs are not yet financially feasible in all countries; however, in some nations, 100% PV charging is already a viable option. In general, it can be concluded that in contrast to driving an ICE-V, the further PV-powered EVs are driven, the more affordable they become—they might even generate financial revenues—and hence, the higher their positive environmental impact will be. On the basis of this study, it can therefore be concluded that solar PV-powered EVs are a technically feasible and increasingly financially attractive option for transport sector emission reductions in most countries when compared with regular grid charging of EVs and certainly as compared with ICE-Vs.
AB - Electric vehicles (EVs) are becoming an increasingly attractive option to effectively and economically efficiently reduce global fossil fuel consumption as well as CO2 emissions associated with road transportation. In general, the grid provides the electricity required to charge an EV's battery. However, it could be worthwhile to consider EV charging by specific solar photovoltaic (PV) systems to further facilitate the use of renewable energy and to minimize CO2 emissions. Additional benefits could, for instance, be less overloaded local grids and additional grid flexibility. Because little information and experiences exist with so-called solar PV-powered EVs, this paper explores how well PV systems—with the possible combination of battery energy storage systems (BESSs)—might contribute to charging of EVs in four different countries, namely, The Netherlands, Norway, Brazil, and Australia. To this end, a model has been developed that calculates the interactions between PV-BESS systems, EVs, and the grid in each country to determine the electricity balance, financial consequences, and avoided CO2 emissions of PV-powered EVs, compared with EVs that are solely charged by the grid, as well as conventional passenger cars with an internal combustion engine (ICE-V). It is logically found that in countries with a high irradiation, the whole year through, such as Brazil and Australia, solar PV-powered EVs can be operated more effectively than in countries with a high variability of irradiation over the year such as The Netherlands and Norway. If the charging system's PV share is increased from 0% to 50%, the number of required grid charging events per year can be reduced from 104 to 34 in The Netherlands and from 123 to 55 in Norway. PV charging can also reduce CO2 emissions of EVs by 18% to 93% as compared with ICE-Vs depending on the location. From a financial perspective, PV-powered EVs are not yet financially feasible in all countries; however, in some nations, 100% PV charging is already a viable option. In general, it can be concluded that in contrast to driving an ICE-V, the further PV-powered EVs are driven, the more affordable they become—they might even generate financial revenues—and hence, the higher their positive environmental impact will be. On the basis of this study, it can therefore be concluded that solar PV-powered EVs are a technically feasible and increasingly financially attractive option for transport sector emission reductions in most countries when compared with regular grid charging of EVs and certainly as compared with ICE-Vs.
KW - BESS
KW - CO emissions
KW - electric vehicles
KW - PV systems
KW - simulation
KW - CO2 emissions
UR - http://www.scopus.com/inward/record.url?scp=85075332230&partnerID=8YFLogxK
U2 - 10.1002/pip.3202
DO - 10.1002/pip.3202
M3 - Article
AN - SCOPUS:85075332230
SN - 1062-7995
VL - 28
SP - 517
EP - 532
JO - Progress in Photovoltaics: Research and Applications
JF - Progress in Photovoltaics: Research and Applications
IS - 6
ER -