TY - GEN
T1 - A dynamic approach and a new dataset for hand-detection in first person vision
AU - Betancourt Arango, A.
AU - Morerio, P.
AU - Barakova, E.I.
AU - Marcenaro, L.
AU - Rauterberg, G.W.M.
AU - Regazzoni, C.S.
PY - 2015
Y1 - 2015
N2 - Hand detection and segmentation methods stand as two of the most most prominent objectives in First Person Vision. Their popularity is mainly explained by the importance of a reliable detection and location of the hands to develop human-machine interfaces for emergent wearable cameras. Current developments have been focused on hand segmentation problems, implicitly assuming that hands are always in the field of view of the user. Existing methods are commonly presented with new datasets. However, given their implicit assumption, none of them ensure a proper composition of frames with and without hands, as the hand-detection problem requires. This paper presents a new dataset for hand-detection, carefully designed to guarantee a good balance between positive and negative frames, as well as challenging conditions such as illumination changes, hand occlusions and realistic locations. Additionally, this paper extends a state-of-the-art method using a dynamic filter to improve its detection rate. The improved performance is proposed as a baseline to be used with the dataset.
AB - Hand detection and segmentation methods stand as two of the most most prominent objectives in First Person Vision. Their popularity is mainly explained by the importance of a reliable detection and location of the hands to develop human-machine interfaces for emergent wearable cameras. Current developments have been focused on hand segmentation problems, implicitly assuming that hands are always in the field of view of the user. Existing methods are commonly presented with new datasets. However, given their implicit assumption, none of them ensure a proper composition of frames with and without hands, as the hand-detection problem requires. This paper presents a new dataset for hand-detection, carefully designed to guarantee a good balance between positive and negative frames, as well as challenging conditions such as illumination changes, hand occlusions and realistic locations. Additionally, this paper extends a state-of-the-art method using a dynamic filter to improve its detection rate. The improved performance is proposed as a baseline to be used with the dataset.
U2 - 10.1007/978-3-319-23192-1_23
DO - 10.1007/978-3-319-23192-1_23
M3 - Conference contribution
SN - 978-3-319-23191-4
T3 - Lecture Notes in Computer Science
SP - 274
EP - 287
BT - Computer Analysis of Images and Patterns : 16th International Conference, CAIP 2015, Valletta, Malta, September 2-4, 2015 Proceedings, Part I
A2 - Azzopardi, G.
A2 - Petkov, N.
PB - Springer
CY - Berlin
ER -