A data rate constrained observer for discrete nonlinear systems

Research output: Chapter in Book/Report/Conference proceedingConference contributionAcademicpeer-review

1 Citation (Scopus)
20 Downloads (Pure)

Abstract

In this paper, we develop a communication protocol for the observation of discrete time, possibly unstable, dynamical systems over communication channels with limited communication capacity. We develop an observer based on the upper box dimension for one-way communication channels that leads to a certain type of observability. This communication scheme preserves observability under communication losses which makes the communication scheme robust towards communication losses without feedback in the communication channel. Using Lyapunov-like techniques, we provide bounds on the minimum communication rate required to implement this observer. We also use the Lyapunov dimension to provide analytical upper bounds on the communication rate. We compute an analytical upper bound and an exact expression for the Lyapunov dimension of the smoothened Lozi map. This bound is then tested in simulations of the communication protocol for the observation problem of the smoothened Lozi map.

Original languageEnglish
Title of host publication2018 IEEE Conference on Decision and Control, CDC 2018
Place of PublicationPiscataway
PublisherInstitute of Electrical and Electronics Engineers
Pages3355-3360
Number of pages6
ISBN (Electronic)978-1-5386-1395-5
ISBN (Print)978-1-5386-1396-2
DOIs
Publication statusPublished - 18 Jan 2019
Event57th IEEE Conference on Decision and Control, (CDC2018) - Miami, United States
Duration: 17 Dec 201819 Dec 2018
Conference number: 57

Conference

Conference57th IEEE Conference on Decision and Control, (CDC2018)
Abbreviated titleCDC 2018
CountryUnited States
CityMiami
Period17/12/1819/12/18

Fingerprint Dive into the research topics of 'A data rate constrained observer for discrete nonlinear systems'. Together they form a unique fingerprint.

Cite this