A data-driven decision support framework for DEA target setting: an explainable AI approach

Mustafa Jahangoshai Rezaee (Corresponding author), Mohsen Abbaspour Onari (Corresponding author), Morteza Saberi (Corresponding author)

Research output: Contribution to journalArticleAcademicpeer-review

3 Citations (Scopus)
46 Downloads (Pure)

Abstract

The intention of target setting for Decision-Making Units (DMUs) in Data Envelopment Analysis (DEA) is to perform better than their peers or reach a reference efficiency level. However, most of the time, the logic behind the target setting is based on mathematical models, which are not achievable in practice. Besides, these models are based on decreasing/increasing inputs/outputs that might not be feasible based on DMU's potential in the real world. We propose a data-driven decision support framework to set actionable and feasible targets based on vital inputs-outputs for target setting. To do so, DMUs are classified in their corresponding Efficiency Frontier (EF) levels based on multiple EFs approach and a machine learning classifier. Then, the vital inputs-outputs are determined using an Explainable Artificial Intelligence (XAI) method. Finally, a Multi-Objective Counterfactual Explanation is developed based on DEA (MOCE-DEA) to lead DMU in reaching the reference EF by adjusting actionable and feasible inputs-outputs. We studied Iranian hospitals to evaluate the proposed framework and presented two cases to demonstrate its mechanism. The results show that the performance of the DMUs is improved to reach the reference EF for studied cases. Then, a validation was conducted with the primal DEA model to show the robust improvement of DMUs after adjusting their original value based on the generated solutions by the proposed framework. It demonstrates that the adjusted values can also improve DMUs' performance in the primal DEA model.

Original languageEnglish
Article number107222
Number of pages14
JournalEngineering Applications of Artificial Intelligence
Volume127
Issue numberpart A
DOIs
Publication statusPublished - Jan 2024

Bibliographical note

Publisher Copyright:
© 2023 The Author(s)

Keywords

  • Benchmarking
  • Data envelopment analysis
  • Explainable artificial intelligence
  • LIME
  • Multi-objective counterfactual explanation
  • Target setting

Fingerprint

Dive into the research topics of 'A data-driven decision support framework for DEA target setting: an explainable AI approach'. Together they form a unique fingerprint.

Cite this