A cone-beam X-ray computed tomography data collection designed for machine learning

Henri der Sarkissian (Corresponding author), Felix Lucka (Corresponding author), Maureen van Eijnatten, Giulia Colacicco, Sophia Bethany Coban, Kees Joost Batenburg

Research output: Contribution to journalArticleAcademicpeer-review

32 Citations (Scopus)

Abstract

Unlike previous works, this open data collection consists of X-ray cone-beam (CB) computed tomography (CT) datasets specifically designed for machine learning applications and high cone-angle artefact reduction. Forty-two walnuts were scanned with a laboratory X-ray set-up to provide not only data from a single object but from a class of objects with natural variability. For each walnut, CB projections on three different source orbits were acquired to provide CB data with different cone angles as well as being able to compute artefact-free, high-quality ground truth images from the combined data that can be used for supervised learning. We provide the complete image reconstruction pipeline: raw projection data, a description of the scanning geometry, pre-processing and reconstruction scripts using open software, and the reconstructed volumes. Due to this, the dataset can not only be used for high cone-angle artefact reduction but also for algorithm development and evaluation for other tasks, such as image reconstruction from limited or sparse-angle (low-dose) scanning, super resolution, or segmentation.
Original languageEnglish
Article number215
Number of pages8
JournalScientific Data
Volume6
DOIs
Publication statusPublished - 22 Oct 2019
Externally publishedYes

Fingerprint

Dive into the research topics of 'A cone-beam X-ray computed tomography data collection designed for machine learning'. Together they form a unique fingerprint.

Cite this